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Abstract

In the ambient space of a semidirect product R? x4 R, we consider a connected domain
Q C R? x4 {0}. Given a function u: Q — R, its m-graph is graph(u) = {(z, v, u(z,y) |
(z,y,0) € Q}. In this paper we study the partial differential equation that v must satisfy
so graph(u) has prescribed mean curvature H. Using techniques from quasilinear elliptic
equations we prove that if a w-graph has nonnegative mean curvature function, then it
satisfies some uniform height estimates that depends on €2 and on the supremum the
function attains on the boundary of Q. When trace(A) > 0, we prove that the oscillation
of a minimal graph assuming the same constant value n along the boundary tends to
zero when n — 400 and goes to 400 if n — —oo. Furthermore, we use these estimates,
allied with techniques from Killing graphs, to prove the existence of minimal w-graphs
assuming the value 0 along a piecewise smooth curve v with endpoints p1, p2 and having
as boundary v U ({p1} x [0, +00)) U ({p2} x [0, +00)).
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1. Introduction

Let A € M2(R) be a 2 x 2 matrix. The semidirect product R? x4 R is,
as a set, the euclidean 3-space R?, but endowed with a group operation and
with a left invariant metric that come from the exponential map z — e?.
More details about its construction are given in Section 2 below. Also, the
work of W. Meeks and J. Pérez [MP] is a good reference on the subject,
providing the basic aspects of the geometry in these spaces.

There are two main difficulties when dealing with minimal 7-graphs in
semidirect products R? x4 R: the first one is that vertical translations
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(z,y,2) — (x,y,z+t) are not isometries of the ambient space. In particular
this affects the mean curvature operator so that the coefficients of its sec-
ond order terms depend on the solution, and the comparison principle (for
instance Theorem 10.1 of [GT] and its generalizations) does not apply. The
second one is that, unless trace(A) = 0, constant functions do not provide
minimal graphs, so there is no maximum principle, in the sense that the
supremum (or infimum) of a solution to the minimal graph equation may
be strict and attained in the interior of the domain.

In this paper, we consider a convex domain 2 C R?x 4{0} with piecewise
smooth boundary and exhibit the partial differential equation a function
u: 0 — R must satisfy for its w-graph

graph(u) = {(z, y, u(z,y)) € R2 x4 R | (z, y, 0) € Q}

to have prescribed mean curvature function. Depending on the trace and on
the determinant of A such PDE has different behaviours. For instance, when
trace(A) = 0, if u is such that graph(u) has nonnegative mean curvature
H > 0 with respect to the upwards orientation, then it satisfies the maximum
principle

sup u = sup u. (1)
o0 Q

This property was first observed by W. Meeks, P. Mira, J. Pérez and
A. Ros in [MMPR3] (we state this result as Lemma 3.1 below), and we
remark that (1) does not hold when trace(4) > 0, even for H = 0: a
minimal graph that is constant along its boundary necessarily assumes an
interior maximum and it is not constant, as horizontal planes (representing
constant functions) are no longer minimal. It becomes a natural question to
ask if there is a mazimal oscillation these minimal graphs that are constant
along the boundary can attain, and this question is answered in this paper
via height estimates of partial differential equations.

Let us describe some of the main results of this paper: in Section 3,
given 2 C R? x4 {0} and a parameter @ € R, we obtain, in Theorem 3.2,
a constant C'(a) = C(diam(f2), «) such that if u: @ — R is a function such
that graph(u) has nonnegative mean curvature, then

supu < a = supu < supu + C(a). (2)
oN Q o0

Still in Section 3 we prove that the dependence of « in (2) is essential
(Theorem 3.3) for the validity of the result, on the sense that it is not
possible to obtain some constant C' = C(Q2) such that every u: Q@ — R such
that graph(u) has nonnegative mean curvature satisfies the uniform height
estimate

supu < supu + C.
Q o0



We also use, in Theorem 3.5, the freedom of the parameter a to ob-
tain that, when trace(A) > 0 the oscillation of a family of solutions to the
problem

graph(u) is a minimal surface of R? x4 R
U‘aQ =aclR

converges to zero when a approaches +o0o0. Moreover, we prove it goes to
400, if a = —o0.

We finish the paper in Section 4, where we bring techniques from Killing
graphs, in addition to the estimates on the coefficients of the mean curvature
operator obtained on Section 3, to generalize an argument of A. Menezes
[Me] to any semidirect product R? x 4R, and obtain the existence of minimal
m-graphs which are similar to the fundamental piece of the doubly periodic
Scherk surface of R3, on Theorem 4.1.

2. Semidirect products R? x4 R

This section is to give a brief review about semidirect products R? x 4 R.
We follow the notation and construction of W. Meeks and J. Pérez, [MP].

Let H, V to be two groups and let ¢: V — Aut(H) a group homo-
morphism between V' and the group of automorphisms of H. Then, the
semidirect product between H and V with respect to ¢, denoted by G =
H x,V,is the Cartesian product H x V' endowed with the group operation
x: G X G — G given by

(h1, v1) * (ha, v2) = (h1 - Yy, (h2), V1V2).

With this group operation, then both H and V can be viewed as sub-
groups of G and H <G is identified to a normal subgroup of G. This construc-
tion comes to generalize the notion of direct product of groups, where the
operation on the cartesian product H x V would be the product operation
(hl, Ul) * (hQ, ’Ug) = (hlhg, U1’U2).

Even on the particular case of H = R? and V = R being two abelian
groups, it is possible to obtain a great variety of groups via the semidirect
product of R? and R, depending uniquely on the choice of the (now 1-
parameter) family of automorphisms of R2. Precisely, with the exceptions
of SU(2) (which is not diffeomorphic to R?) and 155’7'4(2, R) (which has
no normal subgroup of dimension 2), it is possible to construct all three
dimensional simply connected Lie groups using the following setting: fix a

matrix A € Ma(R),
a b
A= ( c d > (3)



and consider ¢ the 1 parameter subgroup of automorphisms of R? generated
by the exponential map

¢: R — Aut(R?)
z eAZ:R2—>IR2,

then R? x4 R = R? X, R is the semidirect product between R? and R with
respect to ¢, i.e., the set R? = R? x R endowed with the group operation *
defined via

(z1, y1, 21) * (T2, Y2, 22) = << o > + e < :;z > . 21 +22> @)

Y1

Using the notation of [MP], denote the exponential map e by

A ( a11(2) a2(2) ) , (5)

asl (Z) as9 (Z)

and observe that the vector fields defined by

Ei(x,y,2) = a11(2)0z +a21(2)0y, Ez(x,y, 2) = a12(2)0x+a22(2)0y, E3 = 0.
(6)

are left invariant and extend the canonical basis {0,(0), 9y(0), 0;(0)} at the
origin of R3®. Moreover, if we let

Fl = 8%7 F2 = 8:1/7 Fg(l‘,y, Z) = ((L’L' =+ by)ax + (Cw + dy)ay + 827 (7)

it follows that each Fj is a right invariant vector field of R? x4 R, so they
are Killing fields with respect to any left invariant metric of R? x4 R.

The metric to be considered on R? x4 R is the canonical left invariant
metric, that is the one given by stating that {E1, F2, E3} are unitary and
orthogonal to each other everywhere. In particular, as it holds

Ou(z, y, 2) = a11(—2)E1 + a21(—2) E»
y(z, y, 2) = a12(—2)E1 + an(—2)Es,
we can express the metric of R? x4 R in coordinates as
ds® = [all(—z)z + CL21(—Z)2] dz? + [alg(—z)2 + agg(—z)ﬂ dy2 + d2?
+ [all(—z)alg(—z) + agl(—z)agg(—z)] (dr ® dy + dy ® dx).

Note that, as e~ 4% = (eAz)_l and det(e??) = e*trace(4) e have
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< a11(—2) aiz(—2) ) _ o—ztrace(A) ( az(z) —aiz(z) >7

ag(—2) ag(—2) —az1(z) an(z)

and we can introduce the notation

Qll(z) _ <8x, am> _ e—2ztrace(A) [a21(2)2 +a22(z)2]
Qu(2) = (9y, 0y) = e 2" [a1(2)” + ara(2)?] (8)
Qu2(2) = (On, 0y) = —e 2" a1 (2)a21 (2) + a12(2)az(2)]

to obtain that the metric ds? is expressed by

ds® = Q11(2)dx? + Qoz(2)dy? + d2* + Q12(2)(dz @ dy + dy @ dz).  (9)

If A, B € M3(R) are two congruent matrices, on the sense that there
is some orthogonal matrix P € O(2) such that B = PAP~! then the
groups R? x4 R and R? x g R, endowed with their respective canonical left
invariant metrics are isomorphic and isometric, and the map that makes
such identification is a simple rotation on horizontal planes induced by P,

v RZxyR — RZ2xgR

10
(r.0.2) = (Play)2) (10

The Lie brackets of R? x4 R are given by
[E1, B3] =0, [Es, Eq] = aFEy + cEs, [Es, Es] = bE, + dE», (11)

so Levi-Civita equation implies that the Riemannian connection of R? x4 R
satisfies

Vi Er = aBs |V By = YB3 | Vp By = —aB — 5B,
Ve,Ey = YCE; | Vg,Ey = dE; | VgBEy = -Y¢E —db,
Ve, By = SPE, | VB, = 5B, | Vg, By = 0.

We notice two important properties of planes in R? x4 R: first, we
observe that the metric ds? is invariant by rotations of angle = around the
vertical lines {(xo, yo, 2) | # € R}, hence vertical planes are minimal surfaces
of R? x4 R. Moreover, horizontal planes {z = c} have F3 as an unitary
normal vector field, so they have constant mean curvature (with respect to
the upward orientation) given by H = trace(A)/2. In particular, horizontal
planes of R? x 4 R are going to be minimal if and only if trace(A4) = 0.

However, the difference between the cases trace(A) = 0 and trace(A4) # 0
go further than horizontal planes being minimal: concerning the classifica-
tion of simply connected Lie groups of dimension 3, we notice that Meeks
and Pérez, [MP] proved that any non-unimodular' Lie group of dimension 3



(a) A foliation of R? x4 R by vertical (b) The foliation of R? x 4 R by horizon-
(minimal) planes tal (CMC) planes

Figure 1: On semidirect products R? x4 R, every vertical plane is a minimal
surface. Horizontal planes are flat, have constant mean curvature H = trace(A)/2
and the subgroup H = R? x4 {0} (highlighted in the above right picture) is normal
in Rz XA R.

is isomorphic and isometric to a semidirect product R? x4 R, endowed with
its left invariant metric, where A € Ms(R) is such that trace(A) # 0 (Lemma
2.11, [MP]). Moreover, they also prove that, with the exceptions of SU(2)

and PSL(2, R), all other unimodular metric Lie groups are isomorphic and
isometric to a semidirect product R? x4 R, with trace(A) = 0 (Section 2.6
and Theorem 2.15, [MP]). Herein, we reefer to the cases trace(A) = 0 or
trace(A) # 0 respectively as the unimodular and non-unimodular case.

3. Mean curvature equation and height estimates

In this section, we consider a smooth open domain Q C R? x4 {0} and
a function u:  — R. The 7-graph of u is

¥ = graph(u) = {(z, y, u(z,y)) € R? x4 R | (z, y, 0) € Q}.

When oriented with respect to the upwards direction, the mean curvature
of ¥ is

eQutrace(A)

H = —— | e (Qa2(u) +ul) + tyy (Qu1(u) +ul) — 2uay (Q2(w) + uzuy)

+ Gi(u)u + Ga(u)ud + Ga(wluguy + (a + d)e 25| (1)

LA group G is said to be unimodular if det (Ad,) =1 for all g € G



where @Q;;: R — IR are the coefficients of the metric of R? x4 R, defined in
(8), Gi: R — R are the functions given by

Gi(z) = e 222 ((2a + d)ar1(2)? + (a + 2d)a12(2)? + (b + c)ar(2)ai2(z))
Ga(z) = —2ztrace(A) ((2a + d)a21(2)2 + (a+ 2d)a22(z)2 + (b+ c)agl(z)agg(z))
G3(z) = e~ 222 (4a + 2d)ary (2)azi (2) + (2a + 4d)ara(2)ass(2)

+ (b + ¢)(ar11(2)aa(z) + a12(z)az (z))), (13)

Q

and W is

W(z,p) = \/1 + (a11(2)p1 + azl(z)p2)2 + (a12(2)p1 + 022(2)292)2

- \/1 + e2ztrace(4) (Qga(2)p? — 2Q12(2)p1p2 + Qu1(2)P3).

Following the above notation, we define the mean curvature operator

Q1) = g (Q22(w) + 1) + tyy (Qu1(w) + ) + 2uzy (Qu2(u) — uguy)
+G1(u)u2 + Go(wul + Ga(u)uguy + (a + d)e2uraceld) (14)

so graph(u) is a minimal surface of R? x 4 R if and only if u satisfies Q(u) = 0
in €.
Note that ) is a quasilinear elliptic operator, as the matrix

_ Q22(2) +p3  Q12(2) — pipe
Qzp) = ( Qua() —pipe Qui(z) +? ) (15)

is positive definite for every z € R and p = (p1, p2) € R?, as it is easy to see
using the relation

Q11(2)Q22(2) — Q1a(z)? = ¢~ 2trace(4)

In the papers of Meeks, Mira, Pérez and Ros, MMPR, MMPR2, MMPR3],
some work has been done in order to understand constant mean curvature
m-graphs: the fact that R? x4 R admits a foliation by parallel horizontal
planes of constant mean curvature H = trace(A)/2 determines much of the
structure of those graphs. For instance, using this property and the mean
curvature comparison principle, they are able to prove

LEMMA 3.1 (Assertion 15.5, [MMPR3]). Let D C R? x4 {0} be a convex
compact disk and let C = 9D be its boundary. Consider w(z,y,z) = (x,y,0)
the vertical projection. If I C 7= 1(C) is a closed simple curve such that the



projection 7: T' — C monotonically parametrizes® C and h: T — R is the
height function, let co = infr h and ¢ = supp h. If ¥ is a compact minimal
surface with 0% =T, it follows:

1. Iftrace(A) >0, then L C 7= 1(D) N {z > co};
2. If trace(A) <0, then L C w1 (D) N{z < c1}.

In the particular case of graphs, Lemma 3.1 implies that a minimal graph
over some smooth domain Q C R? x4 {0}, compact and convex, satisfies
the maximum principle if trace(A) < 0 and satisfies the minimum principle
if trace(A) > 0, satisfying both only in the unimodular case. However,
when trace(A) > 0 no uniform upper bound is obtained, neither a lower
bound when trace(A) < 0. This motivates the search for height estimates
for minimal graphs, which is next result. Perhaps, the proof of Theorem 3.2
is as interesting as the result itself, as it gives some understanding on the
behaviour of the operator (2, on the many possible settings for the matrix
A. Such properties will be used on the proof of Theorem 3.5, and also in
Section 4 to obtain the existence of minimal Killing graphs that converge to
the Scherk-like fundamental piece of Theorem 4.1.

THEOREM 3.2. Let A € M3(R) and let R?2 x4 R be a semidirect product
endowed with its canonical left invariant metric. Let 2 C R? x4 {0} be a
bounded, convex domain and let « € R be any given constant. Then, there
exists a constant C(a) = C(diam(Q),«) such that for every u satisfying
Q(u) > 0 and supgq u < «, it holds that

supu < o+ C(a). (16)
Q

In particular, there is a constant C depending on diam(2) and on supyq u
such that every w: 0 — R whose graph has monnegative mean curvature
function with respect to the upwards orientation satisfies

supu < supu + C (supu) : (17)
Q o0 0N

The proof of Theorem 3.2 uses techniques from quasilinear elliptic par-
tial differential equations, mainly the comparison principle. For instance,
Theorem 10.1 of [GT] gives us that if R is a quasilinear elliptic operator of
the form

2
R(w) = Z aij(z, grad(w))wg,z; + b(z, w, grad(w)), (18)
ij=1

2This means that 7(T') C 9Q and 7=~ *({p}) NT is either a single point or a compact
interval for every p € 92



for C? functions w: @ — R, where a;; and b are smooth functions and
b is such that for each z € Q and p € R? the function z ~ b(z,z,p) is
nonincreasing, then, given u, v:  — R such that R(u) > R(v) in © and
u < v in 0€2, then u < wv in Q.

However, the operator () given on by (14) does not satisfy the hypothesis
of such comparison principle (or of its generalizations), as the coefficients
of the second order terms of Q(u) depend on w. This happens because
translations (z,y, z) — (z,y, z+1t) are not isometries of R? x 4 R. Hence, we
are not able to prove uniqueness of solutions to the minimal graph equation
and we also need to use a indirect approach to find the height estimates of
Theorem 3.2.

In order to prove Theorem 3.2, we define a quasilinear operator R related
to @, for which it holds the comparison principle. Then, we find an ad hoc
positive function v: Q — R, whose construction will depend only on {2 and
on « such that R(v + o) < R(u). Then, as u < o < v + a along 912, it will
follow that v < v+ « in Q, and we can let C(«, ) be given by C' = supgq, v.

PROOF (Proof of Theorem 3.2). First, we notice that when trace(A) < 0,
the result is trivial with C' = 0 and without the need for an «, by Lemma 3.1.
Thus we will suppose that trace(4) > 0 and focus on the non-unimodular
case. Without loss of generality, after a homothety of the metric we may
assume that trace(A) = 2 and that A is written as

A:<1+a b > (19)

c 1—a

for some a, b, ¢ € R. We divide the proof into two cases, starting when A
is not a diagonal matrix.

CASE 1. Suppose that A is not a diagonal matrix.

We begin by proving the following key claim, which will also be used in
Section 4:

CrLAIM 1. Let the functions @;; be the ones defined by (8) with respect
to the matrix A of (19), where either b # 0 or ¢ # 0. Then, there is some
A > 0 such that at least one of the following hold, for every z € R:

i Qoa(2)e*® >\
il. Q11(2)62Z > A

Moreover, if a® + be < 0, both i. and ii. hold, and if a® + bc > 0, then
b # 0 is equivalent to i. and ¢ # 0 is equivalent to ii.



Proof of Claim 1. We prove Claim 1 in each of three (family of) possibilities
to the exponential of A. First, write A = I + Ag, where I is the identity
matrix and Ag is the traceless part of A,

a b
Ag = .
As I and Ag commute, we obtain that e4? = el#+40% = el2e402 thys
eAz — 7 ( a’?l(z) a?Q(Z) )
- 0 0 )
ag (2) a(z)
where we denote by a%(z) the coefficients of the exponential e40*. Then

a;ij(z) = 6zagj (z), and it follows that

Qui(2)e” = e [a21(2)? + az2(2)?] € = a3, (2)? + ay(2)?, (20)
and, analogously,

Q22(2)e”* = a1 (2)? + aly(2)*. (21)

Note that the characteristic equation of Ag is 0 = det(Ag — tI) = 2 —
(a® + be), so if let d = /|a? + be|, the exponential of Ag is®

a g b o
Aoz _ ( Cos(di) + § sin(dz) d sm(gz) > . when a® + be < 0,
¢ sin(dz) cos(dz) — §sin(dz)
(22)
pAoz ( l14+az bz ) . when a2 + be = 0, (23)
cz 1—az
4oz _ ( cosh(dz) + §sinh(dz) b sinh(dz) )
e = < & sinh(dz) cosh(dz) — % sinh(dz) )’ when a“+bc > 0.

(24)
Let f(2) = ad;(2)2+a¥5(2)? and g(2) = a4 (2)? + a9y (2)?. We will prove
that there is some A > 0 such that either f(z) > A or g(z) > A, and this
proves the claim, by (20) and (21).
Note that both f and ¢ are always positive, as the existence of some
20 € R such that f(zy) = 0 or g(z9) = 0 would imply that det(e0?0) = 0,
an absurdity. Hence, we just need to check the asymptotic behaviour of f
and g.

3We remark that the constant a? + be is linked with the Milnor D-invariant of R? x4 R,
which is defined by D = det(A) = 1 — (a® + be). So each case a® 4 be > 0, a® + bc = 0
and a? 4 bc < 0 is in correspondence with D < 1, D =1 and D > 1, respectively.
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If a® 4 be < 0, the existence of A as claimed follows directly from the fact
that both f and g are periodic and positive, by (22). If a® + be = 0, then
we have that f and g are

f(z) = Q4 az)?>+ (b2)? = (a®> + b))% +2az + 1
g(z) = (1 —a2)? + (c2)? = (a®> + *)2® — 2az + 1,

both strictly positive at infinity for any choice of a, b, ¢, so we also have the
existence of A in this case. Finally, if a®> + bc > 0, f and g are

f(z) = (cosh(dz) + %sinh(dz))2 + <Z sinh(dz)>2

9(2) = (cosh(dz) - %sinh(dz)f +(8 sinh(dz))

If 4. was not true, either lim,,_ f(z) =0 or lim,_,;~ f(2) = 0, hence
b=0. Also, if lim,_,_ o, g(z) = 0 or lim,, 1 g(z) = 0, we would have ¢ = 0.
This shows that if b # 0, then 7. holds, and if ¢ # 0 then 3. holds. As A is
not a diagonal matrix, at least one between i. and ii. is true, finishing the
proof of the claim. O

To proceed with the proof of the first case of Theorem 3.2, we prove the
existence of A > 0 such that G1(z) < AQ22(2) and Ga(z) < AQ11(2). By
definition,

Gi(z) _ e~ ¥ [(3 +a)a11(2)? + (3 — a)ar2(2)® + (b + c)an(z)au(z)]

Q22(2) e~* [a11(2)? + a12(2)?]
a11(2)? — a1z(2)? a11(z)a1z(2)

=3+4+a +(b+c
a11(2)2 + a12(2)2 ( )an(z)2 + a12(2)2
b
<3|+ ;c’:A, (25)

and, mutatis mutandis, the same estimate holds for the quotient G2(2)/Q11(2).

Next, using the existence of A and A as before we prove the first case of
the theorem. Fix any constant a@ € R and let u be any function that satisfies
Q(u) > 0 and supyqu < a.

First, assume that . holds and let R be the quasilinear elliptic operator
defined as

Rw) = (Q““") (D2, (Qult)

Q22(u) Q22(u) Q22(u)
Gi(u) o Go(u) o Gs(u) e g,
0@ T O™ T Qo) T )¢ (26)
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Note that R is defined in order to have two features. First, when w = u,
we have R(u) = Q(u)/Q22(u) > 0. Second, using the notation of (18), we
have that the coefficients a;; of R do not depend on w, only on the space
variable and on the derivatives of w. Also, the function z — b(z, z,p) is
nonincreasing for every x and p fixed, thus R satisfies the hypothesis of the
comparison principle (although, as noticed before, @ does not).

In order to finish the proof of Case 1 (when i. holds), we will build a
nonnegative function v: 2 — R that will depend uniquely on 2 and on «
such that R(v+a) <0 < R(u). Asu < a < a+v on 99, it will follow from
the comparison principle that u < v+ « in €2, and this will finish the proof.

As Q is a bounded domain, after a horizontal translation (which is an
isometry of the ambient space) we may assume without loss of generality
that it is contained in a strip

QC{(z,9,0) eERZx R |1 <z < M)},

for some M > 1. Let v(z,y) = In(lz)/L, where [, L > 0 are constants yet
to be defined. By the definition of R and v, and by the existence of A and
A as before, we have that

Gl(u) 02+2 e —2(v+a)

Qa(u) * Qn(u)

2
< Vg + AV2 + Xe*Q(”a).

R(v+ «) = vy +

Then, using that ¥ = (laz)%, Vp = ﬁ and vz, = L;IIQ, we obtain
1 1 2 oL
R(v+0) < =75+ Mg + 55, (1) / (27)
1 A 2L
T A 2L ar-9)/L
Lz2 [ LTt Neaprr® ] '
Take L=14+A. As 1 <z < M, it follows that
1 1 1+A 28
R < — MT+A | 28
(v+a) (1+A)x2[ T+ A" ")\ 202s ] (28)

and we can choose [ big enough (in particular we may assume [ > 1, so that
v > 0 in Q) such that

1 1+ A
- vo 8 i <o, (29)
1+A )20 751

so R(v + a) < 0. We remark that the choice of [ and L as above depends
uniquely on A, A, @ and M, so it does not depend on wu.
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As R satisfies the hypothesis of the Comparison Principle and v+ a > u
on 01}, it follows that supg v < supq v + a. Finally, we set C' = supq v, and
the theorem follows when A is not diagonal and i. holds.

Still in Case 1 of A not being a diagonal matrix, if 7. was not true, then
b=0, and ¢ # 0, then 4i. holds. In this case, let

_ [ Q(w) +wy Qu(u) + w3 Qu2(u) — wawy
R(w>w”< Qn )“"”( o) 2 (o™

Gi(u) o Ga(u) o Gs(u) e
wy + w Wypwy + 2 e Y. 30
Q@ " Qnw " Qu@ ™" 0w (30
From here, just proceed analogously as before, however using v(z,y) =
In(ly)/L, and making the appropriate choices to [ and L to finish the proof
of Case 1.

CASE 2. Assume that A is a diagonal matrix

[ 1+4a 0
A= ( 0 1—a > ‘
In this case, a11(2) = e(1+“)z, ax(z) = e(1=2)z and a12(z) = a1 (z) = 0. It
follows that the operator @) is

Q(u) = ugy (6_2(1_“)“ + ui) + Uy (6_2(1+“)“ + uﬁ) — 2Ugy (uzuy)

+(3 + a)e—Q(l—a)uui + (3 o a)e—2(1+a)uu§ + 26—4u'

If a > 0 we define R as the operator

R(w) = e (1 + 62(1_a)uw§) + wyy (€_4au + 62(1_“)“1092@) — 2wy (62(1‘“)“wwwy>
+(B3+ a)wl + (3 — a)e ™ w, + 2e2(1+a)w (31)

and if a < 0, R will be defined as

R(w) = wyy <e4au + e2(1+a)uw§> + Wy (1 + e2(1+a)uw§) — 2wy, (62(1+a)uwmwy)
+(3 + a)64auwg + (3 - a)w; + 26—2(1—0,)111. (32)
Now, we just set v to be again v(x,y) = In(lz)/L when a > 0 and

v(z,y) = In(ly)/L when a < 0 and the proof will follow as in the previous
case, using A =3+ |a| and A = 1. O
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Next theorem is to prove that the dependence on « on the constant C
of Theorem 3.2 cannot be removed. Precisely, we prove

THEOREM 3.3. Let A be a matriz as in (19) and let X = R? x4 R be a
non-unimodular semidirect product endowed with its canonical left invariant
metric. Let Q C R? x4 {0} be a bounded, convex domain. Then, for every
constant C' > 0 there exists some function u: Q — R satisfying Q(u) = 0
and also

supu > supu + C. (33)
Q a0

The proof of Theorem 3.3 above is by contradiction and consists on
using the vertical translation that rises from the group structure to translate
a family of solutions tending to —oo, all to height 0. We prove that if
Theorem 3.3 was false, such family would be uniformly bounded, and this
would generate a contradiction with the following theorem, due to Meeks,

Mira, Pérez and Ros [MMPR3]

THEOREM 3.4 (Theorem 15.4, [MMPR3]). Let X be a non-unimodular
metric Lie group which is isomorphic and isometric to a semidirect product
R2 x4 R, A € My(R). Suppose that T'(n) C R? x4 {0} is a sequence of C*?
simple closed convex curves with e = (0,0,0) € I'(n) such that the geodesic
curvatures of I'(n) converge uniformly to 0 and the curves I'(n) converge on
compact subsets to a line L with e € L as n — oo. Then, for any sequence
M(n) of compact branched minimal disks with OM (n) = T'(n), the surfaces
M(n) converge C% on compact subsets as n — oo to the vertical half plane
T (L) N [R? x4 [0, 00)].

PROOF (Proof of Theorem 3.3). We begin by proving the following claim:

Cramm 2. Let $! = {(z,y) € R? | 22 + ? = 1} be the unit circle
centred on the origin of R2. Let A € M>(R) be a matrix with trace(A4) = 2,
as in (19), and let e?* be its exponential map. Then, there is a point
p € $! and an increasing sequence (2, )nen € (0, +00) such that the curves
r, = eAZ"(S1 — p), defined by the homothety by e4?» of the translated
circle $! — p, satisfies the hypothesis of Theorem 3.4 at the origin, i.e., the
geodesic curvature of I'), at 0 is converging to zero and I, is converging to
a line L on compacts, with 0 € L.

Proof of Claim 2. Denote by Ag the traceless part of A and observe that
e? = e%e/0% Then we have that e4*$! = e* (eAOle) is a homothety by e*
of the curve e40*$'. Let d = \/|a2 + bc| and divide the proof on the three
aforementioned cases given on (22), (23) and (24).

If a® + be < 0, we let p € $! be any point and define z, = 2”7“. Then
edozn = 1d, so eA*$! is a circle of radius e?*» centred at the origin, and
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I, = e4#" (! —p) is a circle through the origin with radius e?*». As z, — oo,
I';, will converge to a line L through 0 and the claim is proved in this case.

If a® 4+ bc = 0, then e4°% is given by (23) and e49*$! is an ellipse and the
homotheties of an ellipse by €™ admits a point where its geodesic curvature
converges to zero and, after a translation, it converges to a line on compacts,
proving the claim in this second case.

Finally, if a? + bc > 0, 0% is given by (24). If bc # 0, then d # |a|, and
if 2 is big enough we have that cosh(dz) ~ e%*/2 and sinh(dz) ~ e%* /2, so

dz
erzEL d+a b 7
2d c d—a

and e*8 is asymptotic to a homothety of e(4t2)% of an ellipse, which has the

desired properties. The last case to be treated is when d? = a®+bc = a? > 0,

then
Aoz _ e gsinh(dz) ~ i‘lz d b
¢ sinh(dz) e~ 4 d \ ¢ de %= )’

and, for z large enough it follows that e40#$! is asymptotic to a line segment,

with multiplicity 2. Now, it depends on the two possible cases 0 < d <1
or d > 1 to understand what is the convergence of e4?$!: if d < 1, then
the homothety of €% on 4% will open the segment and make it asymptotic
to an ellipse, which again admits a point p as claimed. If d > 1, then the
action of e still makes e*$! converge to a line on compacts, so the claim
is proved. O

Now, we prove Theorem 3.3 arguing by contradiction. Suppose that
there is C' > 0 such that, for every solution of @Q(u) = 0 in €, it holds

supu < supu + C. (34)
Q o0

In particular, the same estimate holds for any bounded, smooth domain
contained in €. Let » > 0 be such that an euclidean ball B, with radius
7 is contained in  and let $!(r) = OB, be the circle that bounds B, and
let p € $'(r) and (z,)nen be the ones given by Claim 2. Consider, for each
n € IN, the problem

Qu)=0 in B,
{ u=—z, onoB,. (35)

The existence result due to Meeks, Mira, Pérez and Ros, Theorem 15.1
of [MMPR3], implies that (35) admits a solution u,: B, — R, and, from
(34), it follows that, for every n € N, u,, satisfies

sup u, < supu, +C = —z, + C.
0N

T
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We translate the functions u,, vertically to height 0, using the left trans-
lation of the group Lo .,) to obtain a contradiction. If ¥, = graph(u,),
then

L0,0,20)%n = {L(O,O,zn) (z,y,un(x,y)) | (2, y) € Br}

= {(eAZ” ( z > (2, y) —l—zn) (2, y) € BT}
_ {(i T <e_AZ" < g >> —I—zn> G 7)€ eAZnBT}.

Hence, if we let v, : e B, — R be the function defined by

Un(@,y) = Un (eAZ" ( i >> .

it follows that the graph of v, is a left translate of the graph of u,, in
particular its graph in = L(0,0,2,)2n 1s a minimal surface of R? x4 R.
Moreover, these graphs in satisfy the hypothesis of Theorem 3.4, thus they
should converge, in compact sets, to a vertical half plane. However, it holds
that

sup v, = supu, + z, < C,
eAzn B, B,
so the sequence v, is uniformly bounded, generating a contradiction that
proves Theorem 3.3. O

Note that last proof shows more than the existence of a function u as
on (33) for a fixed constant C'. We actually proved that any sequence of
functions with values along the boundary converging to —oo should have
unbounded oscillation. In particular, using the notation of Theorem 3.2, it
follows that, when o« — —o0, necessarily C'(«) — +o0. It is also possible to
prove that C(a) may be chosen more carefully to satisfy C'(a) — 0 when
a — +oo (when trace(A) > 0). We make this analysis in the next result
and in Corollary 3.6.

THEOREM 3.5. Let A € Ma(R) and let R? x4 R be a semidirect product
endowed with its canonical left invariant metric. Let Q C R%x4{0} be some
open, bounded, smooth domain, k € Z. be given and let up be a solution to
the problem

Qu)=0 nQ
{ k on ON). (36)

Then, if osco(u) = supq(u)—infq(u) denotes the oscillation of a function
u in ), we have
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1. If trace(A) =0, ux, = k is the constant function.

2. If trace(A) > 0, then ux > k in Q. Moreover,

li = d i = 0.
. oscq(ug) = 400 an L oscq(uk)

3. If trace(A) < 0, then ug < k in Q. Moreover,

lim oscq(ur) =0 and lim oscq(ug) = +oc.
k——o0 k—4o0

PRrROOF. If trace(A) = 0, it is clear that u; = k is the unique solution
o (36), by Lemma 3.1, proving 1. Also, as the change A — —A gives rise

to an isometry (z,v,2) € R2 x4 R+~ (—z,—y,—2) € R2 x_4 R, & follows
from 2, so we can simply prove the case of trace(A) > 0, and, as previous,
it is without loss of generality that we assume that trace(A) = 2, so A is
written as in (19).

From Lemma 3.1, it follows that uyp > k in €, and, if at an interior
point x € ) the function uy attains its minimum wug(z) = k, then the mean
curvature comparison principle, applied to ¥, = graph(ug) and to the plane
{z = k} will imply that the mean curvature of ¥ is at least as big as the
one of the plane, which is 1 > 0, a contradiction that proves that u; > k in
Q.

The second part of 2 follows like on the proof of Theorem 3.3: if the
oscillation of uj was not going to +0o when k& — —oo then we could trans-
late all the minimal surfaces ¥, = graph(ug) to height zero and obtain a
contradiction with Theorem 3.4.

It remains to prove that the oscillation of u; goes to zero when k ap-
proaches +o0o. In order to do so, it suffices to prove that the constant C'(«)
goes to zero when o — o0.

Recall the proof of Theorem 3.2: C' = C(a) was chosen depending on
many parameters [, L, A\, A, M,«. The constants A and A depend only on
the ambient space, as they come from estimates to the coefficients of the
operator (). The constant M depends uniquely on the diameter of €2, so
it is also fixed. In the proof of Theorem 3.2, the free parameters we could
work with were [ and L, depending on the previous ones and on the a
priori constant . Using an appropriate choice of [ and L, we obtained the
following expression to C

In(IM)

T

The key steps to chose [ and L were between equations (27), (28) and
(29). However, these steps were done by thinking on the worst case, where
the number a was a negatively large number, so we began by choosing L
and then got to the definition of a [ big enough, in order to compensate e,

C =
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which was though to be close to zero. Now, we are taking a; = k to be
positively large, so we follow a different approach.

Using the notation of the proof of Theorem 3.2, let L = A + j, where
j € N is yet to be chosen, and take [ = 1, to obtain, similarly to (28), the
inequality

1 J

S : A+ (5%)
(A+j)x2| A+

+2 \e2k

Rv+k) < (37)

Then, we proceed as before, and try to find some j € IN such that the
right hand side of (37) becomes negative. Such j exists if and only if it
satisfies

A2 A
A+ S, (38)

There is kg € IN big enough such that for every k > kg it is possible to
find j € IN satisfying (38). For k > ko, denote by j(k) the largest j € IN
such that (38) hold (as the left hand side is unbounded with j this is well
defined). By taking L = A+ j(k), we use (37) to obtain, as in Theorem 3.2,
that exists a constant C'(k) = C(£, k) given by

In(M)
Clk)= ————
() A+ j(k)
such that every u: 2 — R such that
Q(u) > 0in Q
u < k on 02
satisfies
In(M)
A+ (k)
Note this is the same result as on Theorem 3.2 but for a different constant

C, and only for @« = k > k. In particular, the functions uy satisfy, for k
large enough, that

sup(u) < k +
Q

k4 In(M)
sup u —_
Y T
hence
In(M)
= —k< /2
oscq(ug) sgpuk = 330

Finally, as the right hand side of (38) is unbounded with respect to k, it
follows that limg_, j(k) = +00, so
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In(M)
1M —— = U,
k—+o0o A + ](k)
and it follows that the oscillation of uj also tends to zero when k — +o0,
finishing the proof of 2 and of the theorem. O

This previous proof has as a consequence the next result.

COROLLARY 3.6. Let R? x4 R be a non-unimodular semidirect product
with trace(A) > 0 and let C(«) be the constant given by Theorems 3.2 and
by the proof of Theorem 8.5. Then

lim C(a) =400, lim C(a)=0.

a—r—00 a—r+00

In particular, if ur,: Q — R is a function satisfying

Q(u) >0 on Q,
suppou = L € R.

Then

lim <sup ur, — L) =400, lim <sup ur, — L) =0. (39)
L——o0 Q L—+4o00 Q

4. Scherk-like fundamental pieces

In this section, we use the tools developed in the study of the mean
curvature operator, together with Killing graphs techniques to obtain an
existence result of Scherk-like fundamental pieces, which are minimal 7-
graphs on R? x4 R assuming the value 0 along a piecewise smooth curve
v C R? x4 {0} and having v U ({p1} x[0, 00)) U ({p2}x[0, o)) as boundary,
where p; and po are the endpoints of ~.

In the ambient space of an unimodular group R? x4 R, A. Menezes
[Me] proved the existence of complete (without boundary) minimal surfaces,
similar to the singly and to the doubly periodic Scherk minimal surfaces of
R3. We would like to take a moment to give the main steps of the proof of
Menezes to the existence of a doubly periodic example:

PROOF (Sketch of the proof of Theorem 2 of [Me]). Let A C R? x4 {0}
be a triangle with vertexes

0= (Oa 07 0)7 b1 = (a'v 07 0)7 b2 = (07 a, 0)7

for some a > 0. Let P. be the polygon given by the union of segments

P. = op1 Upipi(c) Upi(c)pa(c) Upa(c)ps U pao, (40)
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where p1(c) = (a,0,¢) and p2(c) = (0,a,¢). Theorem 15.1 of [MMPR3]
implies the existence of a minimal 7-graph Y. with 0%, = P..

Then, one key property was observed: any ¥ with such boundary is a
Killing graph over the vertical domain Q. = {(t,a —t,s) |0 <t < a, 0 <
s < ¢} with respect to the horizontal Killing field 9, + 9,, thus X, is the
unique minimal surface with I', as boundary.

This implies that .. is stable and that the variation ¢ +— 3., is continuous.
By making ¢ — oo, and using curvature estimates due to H. Rosenberg, R.
Souam and E. Toubiana [RST] for stable surfaces in homogeneous manifolds,
it is possible to show the convergence of . to some surface ¥, nowhere
vertical and with boundary

0%oe = Poo =0p1 U ({p1} x [0, 00)) Uopz U ({p2} x [0, o0)).

Finally, use the ambient isometries to rotate ¥, along the two segments
op1 and ops to obtain a complete minimal 7-graph on R? x4 R, which can
be extended periodically by horizontal translations. O

In this subject, our contribution is an extension of the above result to
any semidirect product R? x4 R. Although in the general case our method
does not produce examples without boundary, on the setting of unimodular
groups our proof, which differs from the one of Menezes, reobtains the same
result explained above. We state our result as follows.

THEOREM 4.1. Let R2x AR be a semidirect product, where A € Ma(R) is
any matriz with trace(A) > 0. Then, there is Ly = Lo(trace(A), det(A)) >0
(and Ly = co when trace(A) = 0) such that if p1, p2 € R? x4 {0} satisfy
d(p1, p2) < Lo, then for any piecewise smooth curve v C R? x4 {0} with
endpoints p1, p2 which is a convexr graph over the segment o = P1ps and
meets « on angles less than /2, there exists a minimal surface ¥ which is
a w-graph and with boundary

9% =~ U ({p1} x [0, +00)) U ({p2} x [0, 400)).

Moreover, ¥ is nowhere vertical, is the unique minimal surface on R? x4 R
with such boundary and it is a Killing graph over the vertical domain Qs =
a X [0, +00).

REMARK. Our construction works in some well studied spaces, for in-

stance in the product space H? x R, which is isometric and isomorphic to
the semidirect product R? x4 R, when we choose

(1),
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In H? x R, Scherk-like graphs have been already studied, and even more
general results were obtained (for instance, in the work of Nelli and Rosen-
berg [NR] and in the work of Hauswirth, Rosenberg and Spruck [HRS]).
However, the isometry between R? x4 R and H? x R maps R? x4 {0} not
to H? x {0}, as it could look at first sight, but to a horocylinder (that is,
the product of a horocycle of H? with R), so the orientation of our graphs
is not the usually studied in this space.

The proof of Theorem 4.1 is given in Section 4.2. If trace(A) > 0, when
considering polygons P, as in (40), there is a minimal 7-graph ¥. with
boundary P.. However, as the maximum principle does not hold, there is
no reason for ¥, be a Killing graph over (2. and we do not have the tools
to ensure the continuity of the family ., which makes impossible to use
geometric barriers. It becomes clear that, when trace(A) # 0, another se-
quence of surfaces ¥, should be constructed, or other tools (such as stability
of minimal 7-graphs — a question that remains open) developed.

Our approach will be as follows: instead of considering minimal 7-graphs
over a domain on R? x4 {0}, we will look to the problem horizontally, and
consider an exhaustion of the half-strip Qs = a x [0, +00) by subdomains
Q. on which is possible to find a family of minimal Killing graphs with
prescribed boundary. Then, we use techniques from Killing graphs and
elliptic partial differential equations to obtain the convergence of such family
to another minimal Killing graph 3.,. Then, we go back to the problem
vertically (as the intermediate Killing graphs will also be w-graphs, by a
result of Meeks, Mira, Pérez and Ros), and then we apply the geometric
barriers used by A. Menezes to see that the surface Y, is, as claimed, a
m-graph, nowhere vertical.

4.1. A good exhaustion of ()

Next proposition is crucial to the construction described above, as it
gives the exhaustion of €1, by domains €2, where is possible to find minimal
Killing graphs with prescribed boundary (see Figure 2).

PROPOSITION 4.2. Let R?x 4R be a semidirect product where trace(A) >
0. Then, there exists a constant Ly = Lo(A) depending uniquely on A such
that for every two points p1, po € R? x4 {0}, if & = pipz is the segment
joining p1 and pe and Qs is the vertical domain

Qoo = a X [0, +00), (41)

then, if L = length(a) < Lo, Qs admits a continuous exhaustion {Q¢}eso
by domains Q. with boundary given by «, a graph over «, called o, and the
two vertical segments joining the endpoints of a and ..

Moreover, such exhaustion is such that the Killing cylinder over 0f).
with respect to the horizontal Killing field Yy = sin(0)0, + cos(0)0, has
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Figure 2: The horizontal domain A and the exhaustion of )., by subdomains
Q. whose Killing cylinder (on the right) have mean curvature vector pointing
inwards.

mean curvature vector pointing inwards, where 6 is such that Yy is normal
to Qs at z = 0.

PROOF. Let p1,p2 € R? x4 {0} be any two points and, after a rotation
on A as in (10) and a horizontal translation of R? x4 R, we may assume
without loss of generality that p; = (0,0,0) and ps = (L,0,0) for some
L > 0. We are going to show that if L is sufficiently small, then we can find
the exhaustion as claimed.

In this setting, « is the segment o = {(z, 0, 0) | 0 < z < L} and Q is
the half-strip

Qoo:{(x,O,z)eIRQNA]RWSxSL,220}, (42)

transversal to the Killing field Y = 9. Such assumptions will be kept until
the end of the paper.

If trace(A) = 0, then the result is trivial (and without the need for
an upper bound Lg) by taking a. to be the translate of o to height c,
ae. = {(z,0,¢) | 0 <z < L}, as horizontal planes are minimal. Then, until
the end of the proof we will treat the non-unimodular case and again we
assume without loss of generality that trace(A) = 2, so A is a matrix as on
(19). We will exhibit the curves o, explicitly, then we prove they have the
desired properties.

First, we treat the case where A is not diagonal and either a? 4 bc < 0
or b £ 0: let A\, A the constants related with the matrix A via i. of Claim 1

and (25). Let
AT
Lo=1/ =2
0 2A 2

and, for L < Ly, we let f: [0, L] = R be
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SRNEC

=—1In

A Cos < 2/{‘L>

Note that f is well defined, as 0 < x < L < Lg implies

NEA PO 9 T
COS )\IE ~ COS )\ s

so the quotient on (43) is larger than (or equal to) 1. In particular f > 0,
with f(z) =0 <= =z = L, and, for ¢ > 0, we define f. = f + ¢ and let
a. = graph(f.) € Q. Using such f., we define

Qe ={(2,0,2) ER*x4R|0<2<L,0< 2 < fo(z)}, (44)

and it follows that {Q.}.~0 is a continuous exhaustion of Q. Next, we
show that the Killing cylinder of the boundary of . with respect to J, has
mean curvature vector pointing inwards.

The 0,-Killing cylinder of 0. has four smooth components (see Figure
2, right): one is a subdomain of a horizontal plane, so it has mean curvature
1 pointing upwards, two are contained on vertical planes, thus are minimal.
The last component is the one corresponding to a., and it is a w-graph of
the function u.(z,y) = fe(x), hence (12) implies that its mean curvature,
when oriented upwards, is

e

| QI+ Galh) (107 + 2| )

From the proof of Theorem 3.2, we obtain that G1/Q22 < A. Moreover,
Claim 1 implies that Q22(z) > Ae™2?, hence

H =

e4fc I / 2 e_2fc

Wsz(fc)[f +A(f) +2 Y ] ; (46)
whenever A is not diagonal and satisfies either b # 0 or a? + bc < 0. In
particular, as f. > 0 we have

H<

64fc 2 2
H < 2—W3sz(fc) [f”+A (f)" + A] . (47)
Note that f was chosen in such a way it satisfies the ODE
" ne | 2
T+ A () +5 =0, (48)

so, from (48) and (47), we obtain that H < 0, with respect to the upward
orientation, hence the mean curvature vector of the Killing cylinder around
a, points downwards, as promised.
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Figure 3: The surface ¥. (on the right) is both a m-graph over A and a
0y-Killing graph over €2, with 0¥ =T'. (the curve the left).

This finishes the proof when A is not diagonal and either a? 4+ bc < 0 or
b # 0. Now, we treat the simpler case of A being given by

A:<1—|—a 0 ) (19)

c 1—a

It follows from (24) that Quo(z) = €2(@~D% and Gi(z) = (3 + a)e?@ 12,
thus, the mean curvature of the m-graph of u(x,y) = f(x) is

2(a+1)f
_ ¢ 2 —2(1+
21173 f+ (3 +a) () +2e7™ a)f] ;
and we can finish the proof similarly to the previous case. ]

4.2. Existence of Scherk-like graphs: Proof of Theorem 4.1

This section is to prove Theorem 4.1, done via an standard argument
of convergence, with the difference that we look at the graphs sometimes
vertically (as m-graphs), to have geometrically defined barriers, and some-
times horizontally (as d,-Killing graphs), so we can use techniques of Killing
graphs and elliptic partial differential equations.

PRrROOF (Proof of Theorem 4.1). Let A € My(R) be any matrix with
trace(A) > 0 and let Ly > 0 be the one given by Proposition 4.2. Let
p1, p2 € R? x4 {0} be such that d(p1, p2) = L < Lo and without loss of
generality assume p; = (0,0,0) and p2 = (L, 0,0).

Let a = {(x,0,0) | 0 <z < L} be the segment joining p; and p2 and let
g: [0, L] — R be a convex, piecewise smooth function, with g(0) = g(L) = 0,
meeting o on angles smaller than 7/2 at 0 and L, that defines a piecewise
smooth curve v C R? x4 {0},

v={(z, g(x), 0) e R* x4 {0} |0 <z < L},
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with endpoints p1, ps such that Uy bounds a convex domain A C R?x 4{0}
(as on Figure 3, left).

Let Qo = a x [0, +00) and, following the notation of Proposition 4.2,
let, for each ¢ > 0,

Qe={(2,0,2) eR*?x,R|0<z<L, 0< 2z < f(z)}.
Let a. = {(z, 0, fo(x)) | 0 <z < L} be the graph of f., in such a way
that its 0,-Killing cylinder
Cyla, (ac) ={(z, y, fe(x)) [0 <z < L,y € R}

has mean curvature vector pointing downwards. We denote by

pi(c) = (0,0, £(0)), p2(c) = (L, 0, fe(L))

the endpoints of «., and let, for ¢ > 0, I'. be the simple closed curve in
R? x4 R given by (see Figure 3, left)

e =y Upipi(c) Uae U papa(c). (50)

CrLAM 3. The curve I'; as above bounds an unique minimal 7-graph X,
over A, which is also a 9,-Killing graph over (..

Proof of Claim 8. First, we notice that ', monotonically parametrizes 0A,
then we can use Theorem 15.1 of [MMPR3] to obtain a minimal w-graph ¥,
with boundary 0%, = I'..

First, we show that ¥. is a 0,-Killing graph, on the sense that there is
a function g.: Q. — R, smooth up to the boundary, such that R(g.) = 0,
where R will stand for the elliptic operator of the mean curvature of minimal
0y-Killing graphs, and

e = Gro,(9e) = {(x, ge(x,2), 2) | (2,0,2) € Qc}. (51)

Note that, as Y. is a m-graph, there is a function u.: A — R such that

Yo = graph(uc) = {(m,y,uc(fv,y)) | ($,y, 0) € A} (52)

We claim X is contained in the dy-Killing cylinder over €, so 0 < uc(x,y) <
fe(z). Indeed, that u > 0 on the interior of A follows directly from the
mean curvature comparison principle, so we show that u.(x,y) < fe(z) for
every (z,y,0) € A. Arguing by contradiction, if there was an interior point
(zo, Yo, 0) € A such that u.(zo, yo) > fe(xo), then we could consider the
family Cylg, (at), for t > ¢, and obtain a last contact point, interior for both
Y. and Cyly, (ar), so the mean curvature of Cyly, (ci;) would point upwards,
a contradiction with Proposition 4.2 that proves that u.(z,y) < f.(x) for
every (z,y,0) € A.
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Let ¢ = (x,0, z) € Q. be an interior point and consider O(q) = {(z,y, 2) |
y € R} the orbit of ¢ with respect to the flux ¢; of the Killing field 9,. Note
that O(q) N X, is never empty for ¢ € Q, otherwise ¥, would not be simply
connected, hence it would not be a m-graph over A.

Moreover, the intersection O(g)N3. cannot contain more than one point:
if there were two points ¢; = ¢y, (q) € X, with ¢; < ta, then for tg = to—t; >
0, 01, (Xc) N # 0. Now, as ¢ (0%.) N X, = 0 for all ¢ # 0 by construction,
we can consider the last contact point between ¢y (X.) N X., and it will be
interior for both X, and ¢;(X.), a contradiction with the maximum principle.

This defines a function g.: Q. — R satisfying the relation (z, g.(x, 2), z) =
YN O(z,0, z), thus 3. can be written as in (51). However, we still do not
have the regularity of g.. In order to prove that g¢. is smooth, we begin by
proving that the norm of grad(g.) is bounded in €.

Let ¢ € €. be any interior point and consider a small open ball B =
Ba,(q,7) € Q¢ such that Cyly,(0B) has mean curvature vector pointing
inwards. Consider the following problem over B:

{ R(w) =0, in B (53)
wlop = gelop,

where R is the mean curvature operator for J,-Killing graphs. In other
words, we are looking for a minimal 9,-Killing graph over a small ball on
Q. that coincides with X, on its boundary.

If ® := g.|spp was of class C*%, we could simply use the existence result
due to M. Dajczer and J. H. de Lira, Theorem 1 of [DL]* to obtain a solution
to (53). However, at this point we can only guarantee that ® is of class C°,
so we need to use an approximation argument. Let (®}),eny € C*%(0B)
be two sequences of C%>“ functions, converging to ® and such that

o, <O, <P<D <P, (54)

for every n € IN. By Theorem 1 of [DL], there are functions w;® € C%*(B)
with minimal 9,-Killing graphs and such that wi|gp = ®. From (54) we
obtain that the sequences (w),cn are also monotone, (w; )nen is nonde-
creasing and (w;),en is nonincreasing, both uniformly bounded. To obtain
the convergence of the sequences w;" to a solution of (53), we use some re-
cent gradient estimates for Killing graphs obtained by J.-B. Casteras and J.
Ripoll in [CRJ:

THEOREM 4.3 (Theorem 4, [CR]). Let M be a Riemannian manifold
and let'Y be a Killing field. Let Q be a Killing domain in M and let o € )

“We notice that the hypothesis on the Ricci curvature on [DL] is used uniquely to obtain
an a priori estimate for the height of the graph, which is satisfied on our setting by the
maximum principle.
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and r > 0 such that the open geodesic ball Bq(o,r) is contained in Q. Let
u € C3(Bq(o,7)) be a negative function whose Y -Killing graph has constant
mean curvature H. Then there is a constant L depending only on u(o), r,
Y| and H such that ||grad(u)(o)|| < L.

All functions w;® have uniform bounds on their C° norm, thus Theorem
4.3 above implies that there are uniform gradient estimates on compact
subsets of B. This implies that both sequences will converge on the C?
norm to a function w € C%(B) N C°(B), which is a solution of (53). Now,
just use the flux of 9, and the same translation argument as before to obtain
that w coincides with g. in B, hence the gradient of g. is bounded on interior
points of €., as claimed.

Next, we use the relation (z, g.(x, 2), z) = (z,y, uc(x,y)) to prove that g.
is actually smooth up to the boundary, with the unique exceptions of py, po,
pi(c), p2(c) (where 9. is not smooth), and the finite number of points where
g is not differentiable. Note that u, is smooth up to the boundary (except
on the points where OA is not differentiable) and that the gradient of w, is
never horizontal on A, by the boundary maximum principle. Moreover, it
follows from last argument that grad(u.) never vanishes on interior points
of A, so g. is also smooth up to the boundary, with the exceptions above.

This proves that any minimal 7-graph S with 95 = T is a Killing graph.
It follows easily that 3. is unique, proving Claim 3. &

We proceed with the proof of Theorem 4.1, by noticing that that the
uniqueness of X, given by Claim 3, implies that the correspondence ¢ +— g,
is continuous. Moreover, by its construction, we have that each g. satisfies,
on the boundary of €2,

90(072) = gC(L7 Z) = 07 gC’ac = 07 gc(CC,O) = g(%)

Again, as Y. is a m-graph over A, it is contained on the m-cylinder over
A, and this can be translated to the horizontal setting as the inequality

0< gc(l'v z) < g($)v (55)

for every (z, 0, z) € Q.. Moreover, the usual argument using flux of 9,
shows that the sequence g. is monotonically increasing with c. In particular,
as it is bounded, the sequence will converge pointwise for some function
Joo: oo — R, such that 0 < g, < g. Next claim shows that the convergence
is actually on the C? norm, so Gry,(gos) = Yoo is a minimal surface of
]RQ XA R.

CLAIM 4. When ¢ — oo, the functions g. converge on the C? norm to
Joo: Qoo — R.

Proof of Claim 4. To prove this claim, we use the same argument of Claim
3, via gradient and height estimates for Killing graphs. Let K C Q. be
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Figure 4: Q C P viewed horizontally: on each compact set K C Q.. there
are uniform gradient estimates.

a compact set in Qy with C*® boundary, as on Figure 4. As it holds
ge(x,z) < g(x), it follows that the height of g. is uniformly bounded on K,
so we can use Theorem 4.3 to obtain an uniform bound for the norm of the
gradient of g. on interior points of K.

Note that (55), together with the assumption that the angle v makes with
a at p; and py is less than /2, implies that every g. satisfies an uniform
gradient estimate also along the boundary of K. As g.x € C*%(K) is
smooth up to the boundary, this implies an uniform estimate for the gradient
of g. on K.

Now, just take an exhaustion of 2., by compact sets and, by using an
standard argument, we obtain that a subsequence of (g.) converges to goo
on the C? norm. In particular, as the sequence is monotone and converges
pointwise, it follows that the convergence is smooth on the whole Q..

From this claim we obtain that Y. is a minimal surface of R? x4 R, and
that its boundary is

%o =T =7 U ({p1} x [0, 00)) U ({p2} % [0, 00)).

In order to finish the proof of Theorem 4.1, it remains to show that ¥, is
nowhere vertical and that it is unique. The uniqueness comes directly from
the fact that it was built as a Killing graph, and that every other surface
with such boundary is contained on the 9,-Killing cylinder over 2.

To show that ¥, is nowhere vertical, we go back to analyse the problem
using m-graphs. First, if there was an interior point p € ¥, such that T,¥
was vertical, Yo, and T,¥. would be two minimal surfaces of R? x4 R
tangent to each other at p. Then, there are at least two curves, meeting
transversely at p on the intersection 7,3 MY, S0 Yoo cannot be a w-graph
on a neighbourhood of p. Hence, it is a m-cylinder over some line segment®

°If B C R? x4 {0} is a smooth curve, the 7-cylinder 8 x [0, co) is minimal if and only if
B is a line segment: to see this, just use the foliation of R? x4 R by vertical planes which

28



G NNN
Figure 5: The construction of the barrier ﬁ, by deforming OR over r3.

B contained on 0A. Secondly, if the point p € 9%, was a boundary point
where T, was vertical, then the boundary maximum principle would
reach to the same conclusion. Next claim is to show that ¥, meets 771(7)
uniquely on v, s0 Yo D (6 x [0, oo)) is a contradiction.

CLAIM 5. Yo N7 L(y) = 7.

Proof of Claim 5. To prove this, we use the same barrier technique of A.
Menezes, [Me]: Let 7; be a smooth component of v and let p € 7; be any
point. Consider L the vertical plane of R? x 4 R containing the tangent line
to ; at p (this is well defined even for p € 9v;, as ~; is smooth). As v is
convex, this implies that A is contained on the same connected component
of R? x4 R defined by L, and so does Yu.

Let, for ¢ > 0, u.: A — R be as in (52). and let ¢y = supp ug. For
co > 1 > ¢p, consider a rectangle R C L with boundary OR = r1UraUs1Uss
given by two parallel horizontal segments 1 and r2 and two vertical segments
s1 and sg2, such that s; C {z = ¢1} and sy C {z = c2}, that projects into
R? x4 {0} in a compact segment r > p with endpoints ¢ = 7(s1) and
g2 = 7(s2), contained on the same half-space determined by {y = 0} (the
vertical plane containing «) and with g, outside A, see Figure 5.

Let g3 € m(R) be a point interior to the projection of R that is not in
A. Then, g3 = 7 1(g3) N ry divides 75 into two compact segments 73 U 74,
r3 projecting entirely outside A and with p € 7(ry).

are parallel to the vertical plane generated by the endpoints of 5. It also follows from the
more general formula H(z,y, z) = kg(z,y)e” =52 where k,(x,y) denotes the geodesic
curvature of 8 on the point (x,y,0). The proof of this formula is a simple computation.
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As L it is transversal to a (horizontal) Killing field, it is stable. In par-
ticular, it follows from the useful criteria due to D. Fischer-Colbrie and R.
Schoen, Theorem 1 of [FS] (also proved on Proposition 1.32 of the book by
Colding and Minicozzi, [CM]) that R is strictly stable, thus small perturba-
tions of OR give rise to minimal surfaces with the perturbed boundary.

Change ro by making a parallel translation of r3 on the direction of the
half-space that contains Y., whose projection still does not intersect A,
joined by two small segments and denote such curve r3, in such a way that
rs U T3 bounds a small rectangle on the horizontal plane {z = c2}. We
assume this perturbation is small in such way that its projection does not
intersect A. Let R be a minimal surface of R? x 4 R whose boundary is the
perturbed rectangle r{ UrsUr4Us; Uss. Such surface is nowhere vertical and
its contained in the convex hull of its boundary, in particular it is contained
in {z > c1} and in the same half space that X with respect to L.

It is easy to see that (R )ﬂA # (), otherwise RN R would have a interior
contact point. Moreover, R is above ug on 7T(R) N A, by the construction of
R. Then, if S N Wﬁl(%) # ~i, we would have that Yoo N R # 0, thus, for
some ¢ > 0 there would be a first contact point between ¥, and R. As 0%y
does not intersect the convex hull of 8R it does not intersect R. Moreover,
neither R can intersect Yy, as this would imply such point would be in
the plane L, so ¥, would have a vertical tangent plane. Then such contact
point would be interior for both, reaching to a contradiction that proves the
claim. &

From Claim 5 and from the argument previously done, we obtain that
Yo is a m-graph, nowhere vertical, which finishes the proof of Theorem 4.1.

O
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