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Abstract

In the ambient space of a semidirect product R2 oA R, we consider a connected domain
Ω ⊆ R2 oA {0}. Given a function u : Ω → R, its π-graph is graph(u) = {(x, y, u(x, y) |
(x, y, 0) ∈ Ω}. In this paper we study the partial differential equation that u must satisfy
so graph(u) has prescribed mean curvature H. Using techniques from quasilinear elliptic
equations we prove that if a π-graph has nonnegative mean curvature function, then it
satisfies some uniform height estimates that depends on Ω and on the supremum the
function attains on the boundary of Ω. When trace(A) > 0, we prove that the oscillation
of a minimal graph assuming the same constant value n along the boundary tends to
zero when n → +∞ and goes to +∞ if n → −∞. Furthermore, we use these estimates,
allied with techniques from Killing graphs, to prove the existence of minimal π-graphs
assuming the value 0 along a piecewise smooth curve γ with endpoints p1, p2 and having
as boundary γ ∪ ({p1} × [0, +∞)) ∪ ({p2} × [0, +∞)).

Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 35J62.

Keywords and phrases: Minimal surfaces, metric Lie groups, semidirect products, quasi-
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1. Introduction

Let A ∈M2(R) be a 2× 2 matrix. The semidirect product R2 oA R is,
as a set, the euclidean 3-space R3, but endowed with a group operation and
with a left invariant metric that come from the exponential map z 7→ eAz.
More details about its construction are given in Section 2 below. Also, the
work of W. Meeks and J. Pérez [MP] is a good reference on the subject,
providing the basic aspects of the geometry in these spaces.

There are two main difficulties when dealing with minimal π-graphs in
semidirect products R2 oA R: the first one is that vertical translations
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(x, y, z) 7→ (x, y, z+ t) are not isometries of the ambient space. In particular
this affects the mean curvature operator so that the coefficients of its sec-
ond order terms depend on the solution, and the comparison principle (for
instance Theorem 10.1 of [GT] and its generalizations) does not apply. The
second one is that, unless trace(A) = 0, constant functions do not provide
minimal graphs, so there is no maximum principle, in the sense that the
supremum (or infimum) of a solution to the minimal graph equation may
be strict and attained in the interior of the domain.

In this paper, we consider a convex domain Ω ⊆ R2oA{0} with piecewise
smooth boundary and exhibit the partial differential equation a function
u : Ω→ R must satisfy for its π-graph

graph(u) = {(x, y, u(x, y)) ∈ R2 oA R | (x, y, 0) ∈ Ω}

to have prescribed mean curvature function. Depending on the trace and on
the determinant of A such PDE has different behaviours. For instance, when
trace(A) = 0, if u is such that graph(u) has nonnegative mean curvature
H ≥ 0 with respect to the upwards orientation, then it satisfies the maximum
principle

sup
∂Ω

u = sup
Ω
u. (1)

This property was first observed by W. Meeks, P. Mira, J. Pérez and
A. Ros in [MMPR3] (we state this result as Lemma 3.1 below), and we
remark that (1) does not hold when trace(A) > 0, even for H ≡ 0: a
minimal graph that is constant along its boundary necessarily assumes an
interior maximum and it is not constant, as horizontal planes (representing
constant functions) are no longer minimal. It becomes a natural question to
ask if there is a maximal oscillation these minimal graphs that are constant
along the boundary can attain, and this question is answered in this paper
via height estimates of partial differential equations.

Let us describe some of the main results of this paper: in Section 3,
given Ω ⊆ R2 oA {0} and a parameter α ∈ R, we obtain, in Theorem 3.2,
a constant C(α) = C(diam(Ω), α) such that if u : Ω→ R is a function such
that graph(u) has nonnegative mean curvature, then

sup
∂Ω

u ≤ α⇒ sup
Ω
u ≤ sup

∂Ω
u+ C(α). (2)

Still in Section 3 we prove that the dependence of α in (2) is essential
(Theorem 3.3) for the validity of the result, on the sense that it is not
possible to obtain some constant C = C(Ω) such that every u : Ω→ R such
that graph(u) has nonnegative mean curvature satisfies the uniform height
estimate

sup
Ω
u ≤ sup

∂Ω
u+ C.
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We also use, in Theorem 3.5, the freedom of the parameter α to ob-
tain that, when trace(A) > 0 the oscillation of a family of solutions to the
problem {

graph(u) is a minimal surface of R2 oA R

u|∂Ω = α ∈ R

converges to zero when α approaches +∞. Moreover, we prove it goes to
+∞, if α→ −∞.

We finish the paper in Section 4, where we bring techniques from Killing
graphs, in addition to the estimates on the coefficients of the mean curvature
operator obtained on Section 3, to generalize an argument of A. Menezes
[Me] to any semidirect product R2oAR, and obtain the existence of minimal
π-graphs which are similar to the fundamental piece of the doubly periodic
Scherk surface of R3, on Theorem 4.1.

2. Semidirect products R2 oA R

This section is to give a brief review about semidirect products R2oAR.
We follow the notation and construction of W. Meeks and J. Pérez, [MP].

Let H, V to be two groups and let ϕ : V → Aut(H) a group homo-
morphism between V and the group of automorphisms of H. Then, the
semidirect product between H and V with respect to ϕ, denoted by G =
H oϕ V , is the Cartesian product H ×V endowed with the group operation
∗ : G×G→ G given by

(h1, v1) ∗ (h2, v2) = (h1 · ϕv1(h2), v1v2).

With this group operation, then both H and V can be viewed as sub-
groups of G and H/G is identified to a normal subgroup of G. This construc-
tion comes to generalize the notion of direct product of groups, where the
operation on the cartesian product H × V would be the product operation
(h1, v1) ∗ (h2, v2) = (h1h2, v1v2).

Even on the particular case of H = R2 and V = R being two abelian
groups, it is possible to obtain a great variety of groups via the semidirect
product of R2 and R, depending uniquely on the choice of the (now 1-
parameter) family of automorphisms of R2. Precisely, with the exceptions

of SU(2) (which is not diffeomorphic to R3) and P̃SL(2, R) (which has
no normal subgroup of dimension 2), it is possible to construct all three
dimensional simply connected Lie groups using the following setting: fix a
matrix A ∈M2(R),

A =

(
a b
c d

)
(3)
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and consider ϕ the 1 parameter subgroup of automorphisms of R2 generated
by the exponential map

ϕ : R → Aut(R2)
z 7→ eAz : R2 → R2,

then R2 oAR = R2 oϕR is the semidirect product between R2 and R with
respect to ϕ, i.e., the set R3 = R2 ×R endowed with the group operation ∗
defined via

(x1, y1, z1) ∗ (x2, y2, z2) =

((
x1

y1

)
+ eAz1

(
x2

y2

)
, z1 + z2

)
. (4)

Using the notation of [MP], denote the exponential map eAz by

eAz =

(
a11(z) a12(z)
a21(z) a22(z)

)
, (5)

and observe that the vector fields defined by

E1(x, y, z) = a11(z)∂x+a21(z)∂y, E2(x, y, z) = a12(z)∂x+a22(z)∂y, E3 = ∂z
(6)

are left invariant and extend the canonical basis {∂x(0), ∂y(0), ∂z(0)} at the
origin of R3. Moreover, if we let

F1 = ∂x, F2 = ∂y, F3(x, y, z) = (ax+ by)∂x + (cx+ dy)∂y + ∂z, (7)

it follows that each Fi is a right invariant vector field of R2 oA R, so they
are Killing fields with respect to any left invariant metric of R2 oA R.

The metric to be considered on R2 oA R is the canonical left invariant
metric, that is the one given by stating that {E1, E2, E3} are unitary and
orthogonal to each other everywhere. In particular, as it holds

∂x(x, y, z) = a11(−z)E1 + a21(−z)E2

∂y(x, y, z) = a12(−z)E1 + a22(−z)E2,

we can express the metric of R2 oA R in coordinates as

ds2 =
[
a11(−z)2 + a21(−z)2

]
dx2 +

[
a12(−z)2 + a22(−z)2

]
dy2 + dz2

+
[
a11(−z)a12(−z) + a21(−z)a22(−z)

]
(dx⊗ dy + dy ⊗ dx).

Note that, as e−Az =
(
eAz
)−1

and det(eAz) = eztrace(A), we have
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(
a11(−z) a12(−z)
a21(−z) a22(−z)

)
= e−ztrace(A)

(
a22(z) −a12(z)
−a21(z) a11(z)

)
,

and we can introduce the notation

Q11(z) = 〈∂x, ∂x〉 = e−2ztrace(A)
[
a21(z)2 + a22(z)2

]
Q22(z) = 〈∂y, ∂y〉 = e−2ztrace(A)

[
a11(z)2 + a12(z)2

]
(8)

Q12(z) = 〈∂x, ∂y〉 = −e−2ztrace(A) [a11(z)a21(z) + a12(z)a22(z)]

to obtain that the metric ds2 is expressed by

ds2 = Q11(z)dx2 +Q22(z)dy2 + dz2 +Q12(z)(dx⊗ dy + dy ⊗ dx). (9)

If A, B ∈ M2(R) are two congruent matrices, on the sense that there
is some orthogonal matrix P ∈ O(2) such that B = PAP−1, then the
groups R2 oA R and R2 oB R, endowed with their respective canonical left
invariant metrics are isomorphic and isometric, and the map that makes
such identification is a simple rotation on horizontal planes induced by P ,

ψ : R2 oA R → R2 oB R

(x, y, z) 7→ (P (x, y), z).
(10)

The Lie brackets of R2 oA R are given by

[E1, E2] = 0, [E3, E1] = aE1 + cE2, [E3, E2] = bE1 + dE2, (11)

so Levi-Civita equation implies that the Riemannian connection of R2 oAR

satisfies

∇E1E1 = aE3 ∇E1E2 = b+c
2 E3 ∇E1E3 = −aE1 − b+c

2 E2

∇E2E1 = b+c
2 E3 ∇E2E2 = dE3 ∇E2E3 = − b+c

2 E1 − dE2

∇E3E1 = c−b
2 E2 ∇E3E2 = b−c

2 E1 ∇E3E3 = 0.

We notice two important properties of planes in R2 oA R: first, we
observe that the metric ds2 is invariant by rotations of angle π around the
vertical lines {(x0, y0, z) | z ∈ R}, hence vertical planes are minimal surfaces
of R2 oA R. Moreover, horizontal planes {z = c} have E3 as an unitary
normal vector field, so they have constant mean curvature (with respect to
the upward orientation) given by H = trace(A)/2. In particular, horizontal
planes of R2 oA R are going to be minimal if and only if trace(A) = 0.

However, the difference between the cases trace(A) = 0 and trace(A) 6= 0
go further than horizontal planes being minimal: concerning the classifica-
tion of simply connected Lie groups of dimension 3, we notice that Meeks
and Pérez, [MP] proved that any non-unimodular1 Lie group of dimension 3
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(a) A foliation of R2 oA R by vertical
(minimal) planes

(b) The foliation of R2oAR by horizon-
tal (CMC) planes

Figure 1: On semidirect products R2 oA R, every vertical plane is a minimal
surface. Horizontal planes are flat, have constant mean curvature H = trace(A)/2
and the subgroup H = R2oA {0} (highlighted in the above right picture) is normal
in R2 oA R.

is isomorphic and isometric to a semidirect product R2 oAR, endowed with
its left invariant metric, where A ∈M2(R) is such that trace(A) 6= 0 (Lemma
2.11, [MP]). Moreover, they also prove that, with the exceptions of SU(2)

and P̃SL(2, R), all other unimodular metric Lie groups are isomorphic and
isometric to a semidirect product R2 oA R, with trace(A) = 0 (Section 2.6
and Theorem 2.15, [MP]). Herein, we reefer to the cases trace(A) = 0 or
trace(A) 6= 0 respectively as the unimodular and non-unimodular case.

3. Mean curvature equation and height estimates

In this section, we consider a smooth open domain Ω ⊆ R2 oA {0} and
a function u : Ω→ R. The π-graph of u is

Σ = graph(u) = {(x, y, u(x, y)) ∈ R2 oA R | (x, y, 0) ∈ Ω}.

When oriented with respect to the upwards direction, the mean curvature
of Σ is

H =
e2utrace(A)

2W 3

[
uxx

(
Q22(u) + u2

y

)
+ uyy

(
Q11(u) + u2

x

)
− 2uxy (Q12(u) + uxuy)

+G1(u)u2
x +G2(u)u2

y +G3(u)uxuy + (a+ d)e−2utrace(A)

]
, (12)

1A group G is said to be unimodular if det (Adg) = 1 for all g ∈ G
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where Qij : R→ R are the coefficients of the metric of R2 oA R, defined in
(8), Gi : R→ R are the functions given by

G1(z) = e−2ztrace(A)
(
(2a+ d)a11(z)2 + (a+ 2d)a12(z)2 + (b+ c)a11(z)a12(z)

)
G2(z) = e−2ztrace(A)

(
(2a+ d)a21(z)2 + (a+ 2d)a22(z)2 + (b+ c)a21(z)a22(z)

)
G3(z) = e−2ztrace(A)

(
(4a+ 2d)a11(z)a21(z) + (2a+ 4d)a12(z)a22(z)

+ (b+ c)(a11(z)a22(z) + a12(z)a21(z))
)
, (13)

and W is

W (z, p) =

√
1 + (a11(z)p1 + a21(z)p2)2 + (a12(z)p1 + a22(z)p2)2

=
√

1 + e2ztrace(A)
(
Q22(z)p2

1 − 2Q12(z)p1p2 +Q11(z)p2
2

)
.

Following the above notation, we define the mean curvature operator

Q(u) = uxx
(
Q22(u) + u2

y

)
+ uyy

(
Q11(u) + u2

x

)
+ 2uxy (Q12(u)− uxuy)

+G1(u)u2
x +G2(u)u2

y +G3(u)uxuy + (a+ d)e−2utrace(A), (14)

so graph(u) is a minimal surface of R2oAR if and only if u satisfies Q(u) = 0
in Ω.

Note that Q is a quasilinear elliptic operator, as the matrix

Q(z, p) =

(
Q22(z) + p2

2 Q12(z)− p1p2

Q12(z)− p1p2 Q11(z) + p2
1

)
(15)

is positive definite for every z ∈ R and p = (p1, p2) ∈ R2, as it is easy to see
using the relation

Q11(z)Q22(z)−Q12(z)2 = e−2ztrace(A).

In the papers of Meeks, Mira, Pérez and Ros, [MMPR, MMPR2, MMPR3],
some work has been done in order to understand constant mean curvature
π-graphs: the fact that R2 oA R admits a foliation by parallel horizontal
planes of constant mean curvature H = trace(A)/2 determines much of the
structure of those graphs. For instance, using this property and the mean
curvature comparison principle, they are able to prove

Lemma 3.1 (Assertion 15.5, [MMPR3]). Let D ⊆ R2oA {0} be a convex
compact disk and let C = ∂D be its boundary. Consider π(x, y, z) = (x, y, 0)
the vertical projection. If Γ ⊆ π−1(C) is a closed simple curve such that the
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projection π : Γ → C monotonically parametrizes2 C and h : Γ → R is the
height function, let c0 = infΓ h and c1 = supΓ h. If Σ is a compact minimal
surface with ∂Σ = Γ, it follows:

1. If trace(A) ≥ 0, then Σ ⊆ π−1(D) ∩ {z ≥ c0};

2. If trace(A) ≤ 0, then Σ ⊆ π−1(D) ∩ {z ≤ c1}.

In the particular case of graphs, Lemma 3.1 implies that a minimal graph
over some smooth domain Ω ⊆ R2 oA {0}, compact and convex, satisfies
the maximum principle if trace(A) ≤ 0 and satisfies the minimum principle
if trace(A) ≥ 0, satisfying both only in the unimodular case. However,
when trace(A) > 0 no uniform upper bound is obtained, neither a lower
bound when trace(A) < 0. This motivates the search for height estimates
for minimal graphs, which is next result. Perhaps, the proof of Theorem 3.2
is as interesting as the result itself, as it gives some understanding on the
behaviour of the operator Q, on the many possible settings for the matrix
A. Such properties will be used on the proof of Theorem 3.5, and also in
Section 4 to obtain the existence of minimal Killing graphs that converge to
the Scherk-like fundamental piece of Theorem 4.1.

Theorem 3.2. Let A ∈M2(R) and let R2 oAR be a semidirect product
endowed with its canonical left invariant metric. Let Ω ⊆ R2 oA {0} be a
bounded, convex domain and let α ∈ R be any given constant. Then, there
exists a constant C(α) = C(diam(Ω), α) such that for every u satisfying
Q(u) ≥ 0 and sup∂Ω u ≤ α, it holds that

sup
Ω
u ≤ α+ C(α). (16)

In particular, there is a constant C depending on diam(Ω) and on sup∂Ω u
such that every u : Ω → R whose graph has nonnegative mean curvature
function with respect to the upwards orientation satisfies

sup
Ω
u ≤ sup

∂Ω
u+ C

(
sup
∂Ω

u

)
. (17)

The proof of Theorem 3.2 uses techniques from quasilinear elliptic par-
tial differential equations, mainly the comparison principle. For instance,
Theorem 10.1 of [GT] gives us that if R is a quasilinear elliptic operator of
the form

R(w) =
2∑

i,j=1

aij(x, grad(w))wxixj + b(x,w, grad(w)), (18)

2This means that π(Γ) ⊂ ∂Ω and π−1({p}) ∩ Γ is either a single point or a compact
interval for every p ∈ ∂Ω
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for C2 functions w : Ω → R, where aij and b are smooth functions and
b is such that for each x ∈ Ω and p ∈ R2 the function z 7→ b(x, z, p) is
nonincreasing, then, given u, v : Ω → R such that R(u) ≥ R(v) in Ω and
u ≤ v in ∂Ω, then u ≤ v in Ω.

However, the operator Q given on by (14) does not satisfy the hypothesis
of such comparison principle (or of its generalizations), as the coefficients
of the second order terms of Q(u) depend on u. This happens because
translations (x, y, z) 7→ (x, y, z+ t) are not isometries of R2oAR. Hence, we
are not able to prove uniqueness of solutions to the minimal graph equation
and we also need to use a indirect approach to find the height estimates of
Theorem 3.2.

In order to prove Theorem 3.2, we define a quasilinear operator R related
to Q, for which it holds the comparison principle. Then, we find an ad hoc
positive function v : Ω→ R, whose construction will depend only on Ω and
on α such that R(v + α) ≤ R(u). Then, as u ≤ α ≤ v + α along ∂Ω, it will
follow that u ≤ v+α in Ω, and we can let C(α,Ω) be given by C = supΩ v.

Proof (Proof of Theorem 3.2). First, we notice that when trace(A) ≤ 0,
the result is trivial with C = 0 and without the need for an α, by Lemma 3.1.
Thus we will suppose that trace(A) > 0 and focus on the non-unimodular
case. Without loss of generality, after a homothety of the metric we may
assume that trace(A) = 2 and that A is written as

A =

(
1 + a b
c 1− a

)
, (19)

for some a, b, c ∈ R. We divide the proof into two cases, starting when A
is not a diagonal matrix.

Case 1. Suppose that A is not a diagonal matrix.

We begin by proving the following key claim, which will also be used in
Section 4:

Claim 1. Let the functions Qij be the ones defined by (8) with respect
to the matrix A of (19), where either b 6= 0 or c 6= 0. Then, there is some
λ > 0 such that at least one of the following hold, for every z ∈ R:

i. Q22(z)e2z > λ;

ii. Q11(z)e2z > λ.

Moreover, if a2 + bc ≤ 0, both i. and ii. hold, and if a2 + bc > 0, then
b 6= 0 is equivalent to i. and c 6= 0 is equivalent to ii.
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Proof of Claim 1. We prove Claim 1 in each of three (family of) possibilities
to the exponential of A. First, write A = I + A0, where I is the identity
matrix and A0 is the traceless part of A,

A0 =

(
a b
c −a

)
.

As I and A0 commute, we obtain that eAz = eIz+A0z = eIzeA0z, thus

eAz = ez
(
a0

11(z) a0
12(z)

a0
21(z) a0

22(z)

)
,

where we denote by a0
ij(z) the coefficients of the exponential eA0z. Then

aij(z) = eza0
ij(z), and it follows that

Q11(z)e2z = e−4z
[
a21(z)2 + a22(z)2

]
e2z = a0

21(z)2 + a0
22(z)2, (20)

and, analogously,

Q22(z)e2z = a0
11(z)2 + a0

12(z)2. (21)

Note that the characteristic equation of A0 is 0 = det(A0 − tI) = t2 −
(a2 + bc), so if let d =

√
|a2 + bc|, the exponential of A0 is3

eA0z =

(
cos(dz) + a

d sin(dz) b
d sin(dz)

c
d sin(dz) cos(dz)− a

d sin(dz)

)
, when a2 + bc < 0,

(22)

eA0z =

(
1 + az bz
cz 1− az

)
, when a2 + bc = 0, (23)

eA0z =

(
cosh(dz) + a

d sinh(dz) b
d sinh(dz)

c
d sinh(dz) cosh(dz)− a

d sinh(dz)

)
, when a2+bc > 0.

(24)
Let f(z) = a0

11(z)2 +a0
12(z)2 and g(z) = a0

21(z)2 +a0
22(z)2. We will prove

that there is some λ > 0 such that either f(z) > λ or g(z) > λ, and this
proves the claim, by (20) and (21).

Note that both f and g are always positive, as the existence of some
z0 ∈ R such that f(z0) = 0 or g(z0) = 0 would imply that det(eA0z0) = 0,
an absurdity. Hence, we just need to check the asymptotic behaviour of f
and g.

3We remark that the constant a2 + bc is linked with the Milnor D-invariant of R2 oA R,
which is defined by D = det(A) = 1− (a2 + bc). So each case a2 + bc > 0, a2 + bc = 0
and a2 + bc < 0 is in correspondence with D < 1, D = 1 and D > 1, respectively.
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If a2 +bc < 0, the existence of λ as claimed follows directly from the fact
that both f and g are periodic and positive, by (22). If a2 + bc = 0, then
we have that f and g are

f(z) = (1 + az)2 + (bz)2 = (a2 + b2)z2 + 2az + 1

g(z) = (1− az)2 + (cz)2 = (a2 + c2)z2 − 2az + 1,

both strictly positive at infinity for any choice of a, b, c, so we also have the
existence of λ in this case. Finally, if a2 + bc > 0, f and g are

f(z) =
(

cosh(dz) +
a

d
sinh(dz)

)2
+

(
b

d
sinh(dz)

)2

g(z) =
(

cosh(dz)− a

d
sinh(dz)

)2
+
( c
d

sinh(dz)
)2
.

If i. was not true, either limz→−∞ f(z) = 0 or limz→+∞ f(z) = 0, hence
b = 0. Also, if limz→−∞ g(z) = 0 or limz→+∞ g(z) = 0, we would have c = 0.
This shows that if b 6= 0, then i. holds, and if c 6= 0 then ii. holds. As A is
not a diagonal matrix, at least one between i. and ii. is true, finishing the
proof of the claim. ♦

To proceed with the proof of the first case of Theorem 3.2, we prove the
existence of Λ > 0 such that G1(z) ≤ ΛQ22(z) and G2(z) ≤ ΛQ11(z). By
definition,

G1(z)

Q22(z)
=
e−4z

[
(3 + a)a11(z)2 + (3− a)a12(z)2 + (b+ c)a11(z)a12(z)

]
e−4z [a11(z)2 + a12(z)2]

= 3 + a
a11(z)2 − a12(z)2

a11(z)2 + a12(z)2
+ (b+ c)

a11(z)a12(z)

a11(z)2 + a12(z)2

≤ 3 + |a|+ |b+ c|
2

= Λ, (25)

and, mutatis mutandis, the same estimate holds for the quotientG2(z)/Q11(z).

Next, using the existence of λ and Λ as before we prove the first case of
the theorem. Fix any constant α ∈ R and let u be any function that satisfies
Q(u) ≥ 0 and sup∂Ω u ≤ α.

First, assume that i. holds and let R be the quasilinear elliptic operator
defined as

R(w) = wxx

(
Q22(u) + w2

y

Q22(u)

)
+ wyy

(
Q11(u) + w2

x

Q22(u)

)
+ 2wxy

(
Q12(u)− wxwy

Q22(u)

)
+
G1(u)

Q22(u)
w2
x +

G2(u)

Q22(u)
w2
y +

G3(u)

Q22(u)
wxwy + 2

e−2u

Q22(u)
e−2w. (26)
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Note that R is defined in order to have two features. First, when w = u,
we have R(u) = Q(u)/Q22(u) ≥ 0. Second, using the notation of (18), we
have that the coefficients aij of R do not depend on w, only on the space
variable and on the derivatives of w. Also, the function z 7→ b(x, z, p) is
nonincreasing for every x and p fixed, thus R satisfies the hypothesis of the
comparison principle (although, as noticed before, Q does not).

In order to finish the proof of Case 1 (when i. holds), we will build a
nonnegative function v : Ω → R that will depend uniquely on Ω and on α
such that R(v+α) ≤ 0 ≤ R(u). As u ≤ α ≤ α+v on ∂Ω, it will follow from
the comparison principle that u ≤ v+α in Ω, and this will finish the proof.

As Ω is a bounded domain, after a horizontal translation (which is an
isometry of the ambient space) we may assume without loss of generality
that it is contained in a strip

Ω ⊆ {(x, y, 0) ∈ R2 oA R | 1 < x < M},

for some M > 1. Let v(x, y) = ln(lx)/L, where l, L > 0 are constants yet
to be defined. By the definition of R and v, and by the existence of λ and
Λ as before, we have that

R(v + α) = vxx +
G1(u)

Q22(u)
v2
x + 2

e−2u

Q22(u)
e−2(v+α)

< vxx + Λv2
x +

2

λ
e−2(v+α).

Then, using that ev = (lx)
1
L , vx = 1

Lx and vxx = −1
Lx2 , we obtain

R(v + α) < − 1

Lx2
+ Λ

1

L2x2
+

2

λe2α
(lx)−2/L (27)

=
1

Lx2

[
− 1 +

Λ

L
+

2L

λe2αl2/L
x(2L−2)/L

]
.

Take L = 1 + Λ. As 1 < x < M , it follows that

R(v + α) <
1

(1 + Λ)x2

[
− 1

1 + Λ
+ 2

1 + Λ

λe2αl
2

1+Λ

M
2Λ

1+Λ

]
, (28)

and we can choose l big enough (in particular we may assume l ≥ 1, so that
v > 0 in Ω) such that

− 1

1 + Λ
+ 2

1 + Λ

λe2αl
2

1+Λ

M
2Λ

1+Λ < 0, (29)

so R(v + α) < 0. We remark that the choice of l and L as above depends
uniquely on λ,Λ, α and M , so it does not depend on u.
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As R satisfies the hypothesis of the Comparison Principle and v+α ≥ u
on ∂Ω, it follows that supΩ u ≤ supΩ v+α. Finally, we set C = supΩ v, and
the theorem follows when A is not diagonal and i. holds.

Still in Case 1 of A not being a diagonal matrix, if i. was not true, then
b = 0, and c 6= 0, then ii. holds. In this case, let

R(w) = wxx

(
Q22(u) + w2

y

Q11(u)

)
+ wyy

(
Q11(u) + w2

x

Q11(u)

)
+ 2wxy

(
Q12(u)− wxwy

Q11(u)

)
+
G1(u)

Q11(u)
w2
x +

G2(u)

Q11(u)
w2
y +

G3(u)

Q11(u)
wxwy + 2

e−2u

Q11(u)
e−2w. (30)

From here, just proceed analogously as before, however using v(x, y) =
ln(ly)/L, and making the appropriate choices to l and L to finish the proof
of Case 1.

Case 2. Assume that A is a diagonal matrix

A =

(
1 + a 0

0 1− a

)
.

In this case, a11(z) = e(1+a)z, a22(z) = e(1−a)z and a12(z) = a21(z) = 0. It
follows that the operator Q is

Q(u) = uxx

(
e−2(1−a)u + u2

y

)
+ uyy

(
e−2(1+a)u + u2

x

)
− 2uxy (uxuy)

+(3 + a)e−2(1−a)uu2
x + (3− a)e−2(1+a)uu2

y + 2e−4u.

If a ≥ 0 we define R as the operator

R(w) = wxx

(
1 + e2(1−a)uw2

y

)
+wyy

(
e−4au + e2(1−a)uw2

x

)
− 2wxy

(
e2(1−a)uwxwy

)
+(3 + a)w2

x + (3− a)e−4auw2
y + 2e−2(1+a)w, (31)

and if a < 0, R will be defined as

R(w) = wxx

(
e4au + e2(1+a)uw2

y

)
+wyy

(
1 + e2(1+a)uw2

x

)
− 2wxy

(
e2(1+a)uwxwy

)
+(3 + a)e4auw2

x + (3− a)w2
y + 2e−2(1−a)w. (32)

Now, we just set v to be again v(x, y) = ln(lx)/L when a ≥ 0 and
v(x, y) = ln(ly)/L when a < 0 and the proof will follow as in the previous
case, using Λ = 3 + |a| and λ = 1.
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Next theorem is to prove that the dependence on α on the constant C
of Theorem 3.2 cannot be removed. Precisely, we prove

Theorem 3.3. Let A be a matrix as in (19) and let X = R2 oA R be a
non-unimodular semidirect product endowed with its canonical left invariant
metric. Let Ω ⊆ R2 oA {0} be a bounded, convex domain. Then, for every
constant C > 0 there exists some function u : Ω → R satisfying Q(u) = 0
and also

sup
Ω
u > sup

∂Ω
u+ C. (33)

The proof of Theorem 3.3 above is by contradiction and consists on
using the vertical translation that rises from the group structure to translate
a family of solutions tending to −∞, all to height 0. We prove that if
Theorem 3.3 was false, such family would be uniformly bounded, and this
would generate a contradiction with the following theorem, due to Meeks,
Mira, Pérez and Ros [MMPR3]

Theorem 3.4 (Theorem 15.4, [MMPR3]). Let X be a non-unimodular
metric Lie group which is isomorphic and isometric to a semidirect product
R2 oA R, A ∈M2(R). Suppose that Γ(n) ⊆ R2 oA {0} is a sequence of C2

simple closed convex curves with e = (0, 0, 0) ∈ Γ(n) such that the geodesic
curvatures of Γ(n) converge uniformly to 0 and the curves Γ(n) converge on
compact subsets to a line L with e ∈ L as n → ∞. Then, for any sequence
M(n) of compact branched minimal disks with ∂M(n) = Γ(n), the surfaces
M(n) converge C2 on compact subsets as n → ∞ to the vertical half plane
π−1(L) ∩

[
R2 oA [0, ∞)

]
.

Proof (Proof of Theorem 3.3). We begin by proving the following claim:

Claim 2. Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle
centred on the origin of R2. Let A ∈M2(R) be a matrix with trace(A) = 2,
as in (19), and let eAz be its exponential map. Then, there is a point
p ∈ S1 and an increasing sequence (zn)n∈N ∈ (0, +∞) such that the curves
Γn = eAzn

(
S1 − p

)
, defined by the homothety by eAzn of the translated

circle S1 − p, satisfies the hypothesis of Theorem 3.4 at the origin, i.e., the
geodesic curvature of Γn at 0 is converging to zero and Γn is converging to
a line L on compacts, with 0 ∈ L.

Proof of Claim 2. Denote by A0 the traceless part of A and observe that
eAz = ezeA0z. Then we have that eAzS1 = ez

(
eA0zS1

)
is a homothety by ez

of the curve eA0zS1. Let d =
√
|a2 + bc| and divide the proof on the three

aforementioned cases given on (22), (23) and (24).
If a2 + bc < 0, we let p ∈ S1 be any point and define zn = 2nπ

d . Then
eA0zn = Id, so eAznS1 is a circle of radius e2zn centred at the origin, and

14



Γn = eAzn(S1−p) is a circle through the origin with radius e2zn . As zn →∞,
Γn will converge to a line L through 0 and the claim is proved in this case.

If a2 + bc = 0, then eA0z is given by (23) and eA0zS1 is an ellipse and the
homotheties of an ellipse by en admits a point where its geodesic curvature
converges to zero and, after a translation, it converges to a line on compacts,
proving the claim in this second case.

Finally, if a2 + bc > 0, eA0z is given by (24). If bc 6= 0, then d 6= |a|, and
if z is big enough we have that cosh(dz) ' edz/2 and sinh(dz) ' edz/2, so

eA0z ' edz

2d

(
d+ a b
c d− a

)
,

and eAzS1 is asymptotic to a homothety of e(d+2)z of an ellipse, which has the
desired properties. The last case to be treated is when d2 = a2+bc = a2 > 0,
then

eA0z =

(
edz b

d sinh(dz)
c
d sinh(dz) e−dz

)
' edz

d

(
d b
c de−2dz

)
,

and, for z large enough it follows that eA0zS1 is asymptotic to a line segment,
with multiplicity 2. Now, it depends on the two possible cases 0 < d ≤ 1
or d > 1 to understand what is the convergence of eAzS1: if d ≤ 1, then
the homothety of ez on eA0z will open the segment and make it asymptotic
to an ellipse, which again admits a point p as claimed. If d > 1, then the
action of ez still makes eAzS1 converge to a line on compacts, so the claim
is proved. ♦

Now, we prove Theorem 3.3 arguing by contradiction. Suppose that
there is C > 0 such that, for every solution of Q(u) = 0 in Ω, it holds

sup
Ω
u ≤ sup

∂Ω
u+ C. (34)

In particular, the same estimate holds for any bounded, smooth domain
contained in Ω. Let r > 0 be such that an euclidean ball Br with radius
r is contained in Ω and let S1(r) = ∂Br be the circle that bounds Br and
let p ∈ S1(r) and (zn)n∈N be the ones given by Claim 2. Consider, for each
n ∈ N, the problem {

Q(u) = 0 in Br
u = −zn on ∂Br.

(35)

The existence result due to Meeks, Mira, Pérez and Ros, Theorem 15.1
of [MMPR3], implies that (35) admits a solution un : Br → R, and, from
(34), it follows that, for every n ∈ N, un satisfies

sup
Br

un ≤ sup
∂Ω

un + C = −zn + C.
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We translate the functions un vertically to height 0, using the left trans-
lation of the group L(0,0,zn) to obtain a contradiction. If Σn = graph(un),
then

L(0,0,zn)Σn =

{
L(0,0,zn) (x, y, un(x, y)) | (x, y) ∈ Br

}
=

{(
eAzn

(
x
y

)
, un(x, y) + zn

)
, (x, y) ∈ Br

}
=

{(
x̃, ỹ, un

(
e−Azn

(
x̃
ỹ

))
+ zn

)
, (x̃, ỹ) ∈ eAznBr

}
.

Hence, if we let vn : eAznBr → R be the function defined by

vn(x, y) = un

(
e−Azn

(
x
y

))
+ zn,

it follows that the graph of vn is a left translate of the graph of un, in
particular its graph Σ̃n = L(0,0,zn)Σn is a minimal surface of R2 oA R.

Moreover, these graphs Σ̃n satisfy the hypothesis of Theorem 3.4, thus they
should converge, in compact sets, to a vertical half plane. However, it holds
that

sup
eAznBr

vn = sup
Br

un + zn ≤ C,

so the sequence vn is uniformly bounded, generating a contradiction that
proves Theorem 3.3.

Note that last proof shows more than the existence of a function u as
on (33) for a fixed constant C. We actually proved that any sequence of
functions with values along the boundary converging to −∞ should have
unbounded oscillation. In particular, using the notation of Theorem 3.2, it
follows that, when α→ −∞, necessarily C(α)→ +∞. It is also possible to
prove that C(α) may be chosen more carefully to satisfy C(α) → 0 when
α → +∞ (when trace(A) > 0). We make this analysis in the next result
and in Corollary 3.6.

Theorem 3.5. Let A ∈M2(R) and let R2 oAR be a semidirect product
endowed with its canonical left invariant metric. Let Ω ⊆ R2oA{0} be some
open, bounded, smooth domain, k ∈ Z be given and let uk be a solution to
the problem {

Q(u) = 0 in Ω
u = k on ∂Ω.

(36)

Then, if oscΩ(u) = supΩ(u)−infΩ(u) denotes the oscillation of a function
u in Ω, we have
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1. If trace(A) = 0, uk ≡ k is the constant function.

2. If trace(A) > 0, then uk > k in Ω. Moreover,

lim
k→+∞

oscΩ(uk) = +∞ and lim
k→+∞

oscΩ(uk) = 0.

3. If trace(A) < 0, then uk < k in Ω. Moreover,

lim
k→−∞

oscΩ(uk) = 0 and lim
k→+∞

oscΩ(uk) = +∞.

Proof. If trace(A) = 0, it is clear that uk ≡ k is the unique solution
to (36), by Lemma 3.1, proving 1. Also, as the change A → −A gives rise
to an isometry (x, y, z) ∈ R2 oA R 7→ (−x,−y,−z) ∈ R2 o−A R, 3 follows
from 2, so we can simply prove the case of trace(A) > 0, and, as previous,
it is without loss of generality that we assume that trace(A) = 2, so A is
written as in (19).

From Lemma 3.1, it follows that uk ≥ k in Ω, and, if at an interior
point x ∈ Ω the function uk attains its minimum uk(x) = k, then the mean
curvature comparison principle, applied to Σk = graph(uk) and to the plane
{z = k} will imply that the mean curvature of Σk is at least as big as the
one of the plane, which is 1 > 0, a contradiction that proves that uk > k in
Ω.

The second part of 2 follows like on the proof of Theorem 3.3: if the
oscillation of uk was not going to +∞ when k → −∞ then we could trans-
late all the minimal surfaces Σk = graph(uk) to height zero and obtain a
contradiction with Theorem 3.4.

It remains to prove that the oscillation of uk goes to zero when k ap-
proaches +∞. In order to do so, it suffices to prove that the constant C(α)
goes to zero when α→∞.

Recall the proof of Theorem 3.2: C = C(α) was chosen depending on
many parameters l, L, λ,Λ,M, α. The constants λ and Λ depend only on
the ambient space, as they come from estimates to the coefficients of the
operator Q. The constant M depends uniquely on the diameter of Ω, so
it is also fixed. In the proof of Theorem 3.2, the free parameters we could
work with were l and L, depending on the previous ones and on the a
priori constant α. Using an appropriate choice of l and L, we obtained the
following expression to C

C =
ln(lM)

L
.

The key steps to chose l and L were between equations (27), (28) and
(29). However, these steps were done by thinking on the worst case, where
the number α was a negatively large number, so we began by choosing L
and then got to the definition of a l big enough, in order to compensate e2α,
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which was though to be close to zero. Now, we are taking αk = k to be
positively large, so we follow a different approach.

Using the notation of the proof of Theorem 3.2, let L = Λ + j, where
j ∈ N is yet to be chosen, and take l = 1, to obtain, similarly to (28), the
inequality

R(v + k) <
1

(Λ + j)x2

[
− j

Λ + j
+ 2

Λ + j

λe2k
M

(
2− 2

Λ+j

)]
. (37)

Then, we proceed as before, and try to find some j ∈ N such that the
right hand side of (37) becomes negative. Such j exists if and only if it
satisfies

(Λ + j)2

jM
2

Λ+j

<
λ

2M2
e2k. (38)

There is k0 ∈ N big enough such that for every k ≥ k0 it is possible to
find j ∈ N satisfying (38). For k ≥ k0, denote by j(k) the largest j ∈ N
such that (38) hold (as the left hand side is unbounded with j this is well
defined). By taking L = Λ + j(k), we use (37) to obtain, as in Theorem 3.2,
that exists a constant C(k) = C(Ω, k) given by

C(k) =
ln(M)

Λ + j(k)

such that every u : Ω→ R such that{
Q(u) ≥ 0 in Ω
u ≤ k on ∂Ω

satisfies

sup
Ω

(u) ≤ k +
ln(M)

Λ + j(k)
.

Note this is the same result as on Theorem 3.2 but for a different constant
C, and only for α = k ≥ k0. In particular, the functions uk satisfy, for k
large enough, that

sup
Ω
uk ≤ k +

ln(M)

Λ + j(k)
,

hence

oscΩ(uk) = sup
Ω
uk − k ≤

ln(M)

Λ + j(k)
.

Finally, as the right hand side of (38) is unbounded with respect to k, it
follows that limk→∞ j(k) = +∞, so
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lim
k→+∞

ln(M)

Λ + j(k)
= 0,

and it follows that the oscillation of uk also tends to zero when k → +∞,
finishing the proof of 2 and of the theorem.

This previous proof has as a consequence the next result.

Corollary 3.6. Let R2 oA R be a non-unimodular semidirect product
with trace(A) > 0 and let C(α) be the constant given by Theorems 3.2 and
by the proof of Theorem 3.5. Then

lim
α→−∞

C(α) = +∞, lim
α→+∞

C(α) = 0.

In particular, if uL : Ω→ R is a function satisfying{
Q(u) ≥ 0 on Ω,
sup∂Ω u = L ∈ R.

Then

lim
L→−∞

(
sup

Ω
uL − L

)
= +∞, lim

L→+∞

(
sup

Ω
uL − L

)
= 0. (39)

4. Scherk-like fundamental pieces

In this section, we use the tools developed in the study of the mean
curvature operator, together with Killing graphs techniques to obtain an
existence result of Scherk-like fundamental pieces, which are minimal π-
graphs on R2 oA R assuming the value 0 along a piecewise smooth curve
γ ⊂ R2 oA {0} and having γ ∪ ({p1}×[0, ∞)) ∪ ({p2}×[0, ∞)) as boundary,
where p1 and p2 are the endpoints of γ.

In the ambient space of an unimodular group R2 oA R, A. Menezes
[Me] proved the existence of complete (without boundary) minimal surfaces,
similar to the singly and to the doubly periodic Scherk minimal surfaces of
R3. We would like to take a moment to give the main steps of the proof of
Menezes to the existence of a doubly periodic example:

Proof (Sketch of the proof of Theorem 2 of [Me]). Let ∆ ⊆ R2 oA {0}
be a triangle with vertexes

o = (0, 0, 0), p1 = (a, 0, 0), p2 = (0, a, 0),

for some a > 0. Let Pc be the polygon given by the union of segments

Pc = op1 ∪ p1p1(c) ∪ p1(c)p2(c) ∪ p2(c)p2 ∪ p2o, (40)
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where p1(c) = (a, 0, c) and p2(c) = (0, a, c). Theorem 15.1 of [MMPR3]
implies the existence of a minimal π-graph Σc with ∂Σc = Pc.

Then, one key property was observed: any Σ with such boundary is a
Killing graph over the vertical domain Ωc = {(t, a − t, s) | 0 ≤ t ≤ a, 0 ≤
s ≤ c} with respect to the horizontal Killing field ∂x + ∂y, thus Σc is the
unique minimal surface with Γc as boundary.

This implies that Σc is stable and that the variation c 7→ Σc is continuous.
By making c→∞, and using curvature estimates due to H. Rosenberg, R.
Souam and E. Toubiana [RST] for stable surfaces in homogeneous manifolds,
it is possible to show the convergence of Σc to some surface Σ∞, nowhere
vertical and with boundary

∂Σ∞ = P∞ = op1 ∪
(
{p1} × [0, ∞)

)
∪ op2 ∪

(
{p2} × [0, ∞)

)
.

Finally, use the ambient isometries to rotate Σ∞ along the two segments
op1 and op2 to obtain a complete minimal π-graph on R2 oA R, which can
be extended periodically by horizontal translations.

In this subject, our contribution is an extension of the above result to
any semidirect product R2 oA R. Although in the general case our method
does not produce examples without boundary, on the setting of unimodular
groups our proof, which differs from the one of Menezes, reobtains the same
result explained above. We state our result as follows.

Theorem 4.1. Let R2oAR be a semidirect product, where A ∈M2(R) is
any matrix with trace(A) ≥ 0. Then, there is L0 = L0(trace(A), det(A)) > 0
(and L0 = ∞ when trace(A) = 0) such that if p1, p2 ∈ R2 oA {0} satisfy
d(p1, p2) ≤ L0, then for any piecewise smooth curve γ ⊆ R2 oA {0} with
endpoints p1, p2 which is a convex graph over the segment α = p1p2 and
meets α on angles less than π/2, there exists a minimal surface Σ which is
a π-graph and with boundary

∂Σ = γ ∪ ({p1} × [0, +∞)) ∪ ({p2} × [0, +∞)).

Moreover, Σ is nowhere vertical, is the unique minimal surface on R2 oAR

with such boundary and it is a Killing graph over the vertical domain Ω∞ =
α× [0, +∞).

Remark. Our construction works in some well studied spaces, for in-
stance in the product space H2 × R, which is isometric and isomorphic to
the semidirect product R2 oA R, when we choose

A =

(
1 0
0 0

)
.
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In H2 × R, Scherk-like graphs have been already studied, and even more
general results were obtained (for instance, in the work of Nelli and Rosen-
berg [NR] and in the work of Hauswirth, Rosenberg and Spruck [HRS]).
However, the isometry between R2 oA R and H2 ×R maps R2 oA {0} not
to H2 × {0}, as it could look at first sight, but to a horocylinder (that is,
the product of a horocycle of H2 with R), so the orientation of our graphs
is not the usually studied in this space.

The proof of Theorem 4.1 is given in Section 4.2. If trace(A) > 0, when
considering polygons Pc as in (40), there is a minimal π-graph Σc with
boundary Pc. However, as the maximum principle does not hold, there is
no reason for Σc be a Killing graph over Ωc and we do not have the tools
to ensure the continuity of the family Σc, which makes impossible to use
geometric barriers. It becomes clear that, when trace(A) 6= 0, another se-
quence of surfaces Σc should be constructed, or other tools (such as stability
of minimal π-graphs – a question that remains open) developed.

Our approach will be as follows: instead of considering minimal π-graphs
over a domain on R2 oA {0}, we will look to the problem horizontally, and
consider an exhaustion of the half-strip Ω∞ = α × [0, +∞) by subdomains
Ωc on which is possible to find a family of minimal Killing graphs with
prescribed boundary. Then, we use techniques from Killing graphs and
elliptic partial differential equations to obtain the convergence of such family
to another minimal Killing graph Σ∞. Then, we go back to the problem
vertically (as the intermediate Killing graphs will also be π-graphs, by a
result of Meeks, Mira, Pérez and Ros), and then we apply the geometric
barriers used by A. Menezes to see that the surface Σ∞ is, as claimed, a
π-graph, nowhere vertical.

4.1. A good exhaustion of Ω∞

Next proposition is crucial to the construction described above, as it
gives the exhaustion of Ω∞ by domains Ωc where is possible to find minimal
Killing graphs with prescribed boundary (see Figure 2).

Proposition 4.2. Let R2oAR be a semidirect product where trace(A) ≥
0. Then, there exists a constant L0 = L0(A) depending uniquely on A such
that for every two points p1, p2 ∈ R2 oA {0}, if α = p1p2 is the segment
joining p1 and p2 and Ω∞ is the vertical domain

Ω∞ = α× [0, +∞), (41)

then, if L = length(α) < L0, Ω∞ admits a continuous exhaustion {Ωc}c>0

by domains Ωc with boundary given by α, a graph over α, called αc, and the
two vertical segments joining the endpoints of α and αc.

Moreover, such exhaustion is such that the Killing cylinder over ∂Ωc

with respect to the horizontal Killing field Yθ = sin(θ)∂x + cos(θ)∂y has
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Figure 2: The horizontal domain ∆ and the exhaustion of Ω∞ by subdomains
Ωc whose Killing cylinder (on the right) have mean curvature vector pointing
inwards.

mean curvature vector pointing inwards, where θ is such that Yθ is normal
to Ω∞ at z = 0.

Proof. Let p1, p2 ∈ R2 oA {0} be any two points and, after a rotation
on A as in (10) and a horizontal translation of R2 oA R, we may assume
without loss of generality that p1 = (0, 0, 0) and p2 = (L, 0, 0) for some
L > 0. We are going to show that if L is sufficiently small, then we can find
the exhaustion as claimed.

In this setting, α is the segment α = {(x, 0, 0) | 0 ≤ x ≤ L} and Ω∞ is
the half-strip

Ω∞ = {(x, 0, z) ∈ R2 oA R | 0 ≤ x ≤ L, z ≥ 0}, (42)

transversal to the Killing field Y = ∂y. Such assumptions will be kept until
the end of the paper.

If trace(A) = 0, then the result is trivial (and without the need for
an upper bound L0) by taking αc to be the translate of α to height c,
αc = {(x, 0, c) | 0 ≤ x ≤ L}, as horizontal planes are minimal. Then, until
the end of the proof we will treat the non-unimodular case and again we
assume without loss of generality that trace(A) = 2, so A is a matrix as on
(19). We will exhibit the curves αc explicitly, then we prove they have the
desired properties.

First, we treat the case where A is not diagonal and either a2 + bc ≤ 0
or b 6= 0: let λ, Λ the constants related with the matrix A via i. of Claim 1
and (25). Let

L0 =

√
λ

2Λ

π

2

and, for L ≤ L0, we let f : [0, L]→ R be
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f(x) =
1

Λ
ln

 cos

(√
2Λ
λ x

)
cos

(√
2Λ
λ L

)
 . (43)

Note that f is well defined, as 0 ≤ x ≤ L < L0 implies

cos

(√
2Λ

λ
x

)
≥ cos

(√
2Λ

λ
L

)
> 0,

so the quotient on (43) is larger than (or equal to) 1. In particular f ≥ 0,
with f(x) = 0 ⇐⇒ x = L, and, for c > 0, we define fc = f + c and let
αc = graph(fc) ⊆ Ω∞. Using such fc, we define

Ωc =
{

(x, 0, z) ∈ R2 oA R | 0 ≤ x ≤ L, 0 ≤ z ≤ fc(x)
}
, (44)

and it follows that {Ωc}c>0 is a continuous exhaustion of Ω∞. Next, we
show that the Killing cylinder of the boundary of Ωc with respect to ∂y has
mean curvature vector pointing inwards.

The ∂y-Killing cylinder of ∂Ωc has four smooth components (see Figure
2, right): one is a subdomain of a horizontal plane, so it has mean curvature
1 pointing upwards, two are contained on vertical planes, thus are minimal.
The last component is the one corresponding to αc, and it is a π-graph of
the function uc(x, y) = fc(x), hence (12) implies that its mean curvature,
when oriented upwards, is

H =
e4fc

2W 3

[
Q22(fc)f

′′
c +G1(fc)

(
f ′c
)2

+ 2e−4fc

]
. (45)

From the proof of Theorem 3.2, we obtain that G1/Q22 ≤ Λ. Moreover,
Claim 1 implies that Q22(z) > λe−2z, hence

H ≤ e4fc

2W 3
Q22(fc)

[
f ′′ + Λ

(
f ′
)2

+ 2
e−2fc

λ

]
, (46)

whenever A is not diagonal and satisfies either b 6= 0 or a2 + bc ≤ 0. In
particular, as fc ≥ 0 we have

H ≤ e4fc

2W 3
Q22(fc)

[
f ′′ + Λ

(
f ′
)2

+
2

λ

]
. (47)

Note that f was chosen in such a way it satisfies the ODE

f ′′ + Λ
(
f ′
)2

+
2

λ
= 0, (48)

so, from (48) and (47), we obtain that H ≤ 0, with respect to the upward
orientation, hence the mean curvature vector of the Killing cylinder around
αc points downwards, as promised.
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Figure 3: The surface Σc (on the right) is both a π-graph over ∆ and a
∂y-Killing graph over Ωc, with ∂Σ = Γc (the curve the left).

This finishes the proof when A is not diagonal and either a2 + bc ≤ 0 or
b 6= 0. Now, we treat the simpler case of A being given by

A =

(
1 + a 0
c 1− a

)
. (49)

It follows from (24) that Q22(z) = e2(a−1)z and G1(z) = (3 + a)e2(a−1)z,
thus, the mean curvature of the π-graph of u(x, y) = f(x) is

H =
e2(a+1)f

2W 3

[
f ′′ + (3 + a)

(
f ′
)2

+ 2e−2(1+a)f

]
,

and we can finish the proof similarly to the previous case.

4.2. Existence of Scherk-like graphs: Proof of Theorem 4.1

This section is to prove Theorem 4.1, done via an standard argument
of convergence, with the difference that we look at the graphs sometimes
vertically (as π-graphs), to have geometrically defined barriers, and some-
times horizontally (as ∂y-Killing graphs), so we can use techniques of Killing
graphs and elliptic partial differential equations.

Proof (Proof of Theorem 4.1). Let A ∈ M2(R) be any matrix with
trace(A) ≥ 0 and let L0 > 0 be the one given by Proposition 4.2. Let
p1, p2 ∈ R2 oA {0} be such that d(p1, p2) = L < L0 and without loss of
generality assume p1 = (0, 0, 0) and p2 = (L, 0, 0).

Let α = {(x, 0, 0) | 0 ≤ x ≤ L} be the segment joining p1 and p2 and let
g : [0, L]→ R be a convex, piecewise smooth function, with g(0) = g(L) = 0,
meeting α on angles smaller than π/2 at 0 and L, that defines a piecewise
smooth curve γ ⊆ R2 oA {0},

γ = {(x, g(x), 0) ∈ R2 oA {0} | 0 ≤ x ≤ L},
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with endpoints p1, p2 such that α∪γ bounds a convex domain ∆ ⊆ R2oA{0}
(as on Figure 3, left).

Let Ω∞ = α × [0, +∞) and, following the notation of Proposition 4.2,
let, for each c ≥ 0,

Ωc = {(x, 0, z) ∈ R2 oA R | 0 ≤ x ≤ L, 0 ≤ z ≤ fc(x)}.

Let αc = {(x, 0, fc(x)) | 0 ≤ x ≤ L} be the graph of fc, in such a way
that its ∂y-Killing cylinder

Cyl∂y(αc) = {(x, y, fc(x)) | 0 ≤ x ≤ L, y ∈ R}

has mean curvature vector pointing downwards. We denote by

p1(c) = (0, 0, fc(0)), p2(c) = (L, 0, fc(L))

the endpoints of αc, and let, for c ≥ 0, Γc be the simple closed curve in
R2 oA R given by (see Figure 3, left)

Γc = γ ∪ p1p1(c) ∪ αc ∪ p2p2(c). (50)

Claim 3. The curve Γc as above bounds an unique minimal π-graph Σc

over ∆, which is also a ∂y-Killing graph over Ωc.

Proof of Claim 3. First, we notice that Γc monotonically parametrizes ∂∆,
then we can use Theorem 15.1 of [MMPR3] to obtain a minimal π-graph Σc

with boundary ∂Σc = Γc.
First, we show that Σc is a ∂y-Killing graph, on the sense that there is

a function gc : Ωc → R, smooth up to the boundary, such that R(gc) = 0,
where R will stand for the elliptic operator of the mean curvature of minimal
∂y-Killing graphs, and

Σc = Gr∂y(gc) = {(x, gc(x, z), z) | (x, 0, z) ∈ Ωc}. (51)

Note that, as Σc is a π-graph, there is a function uc : ∆→ R such that

Σc = graph(uc) = {(x, y, uc(x, y)) | (x, y, 0) ∈ ∆}. (52)

We claim Σc is contained in the ∂y-Killing cylinder over Ωc, so 0 ≤ uc(x, y) ≤
fc(x). Indeed, that u > 0 on the interior of ∆ follows directly from the
mean curvature comparison principle, so we show that uc(x, y) ≤ fc(x) for
every (x, y, 0) ∈ ∆. Arguing by contradiction, if there was an interior point
(x0, y0, 0) ∈ ∆ such that uc(x0, y0) > fc(x0), then we could consider the
family Cyl∂y(αt), for t > c, and obtain a last contact point, interior for both
Σc and Cyl∂y(αt), so the mean curvature of Cyl∂y(αt) would point upwards,
a contradiction with Proposition 4.2 that proves that uc(x, y) ≤ fc(x) for
every (x, y, 0) ∈ ∆.
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Let q = (x, 0, z) ∈ Ωc be an interior point and consider O(q) = {(x, y, z) |
y ∈ R} the orbit of q with respect to the flux ϕt of the Killing field ∂y. Note
that O(q)∩Σc is never empty for q ∈ Ωc, otherwise Σc would not be simply
connected, hence it would not be a π-graph over ∆.

Moreover, the intersection O(q)∩Σc cannot contain more than one point:
if there were two points qi = ϕti(q) ∈ Σc, with t1 < t2, then for t0 = t2−t1 >
0, ϕt0(Σc)∩Σc 6= ∅. Now, as ϕt(∂Σc)∩Σc = ∅ for all t 6= 0 by construction,
we can consider the last contact point between ϕt(Σc) ∩ Σc, and it will be
interior for both Σc and ϕt(Σc), a contradiction with the maximum principle.

This defines a function gc : Ωc → R satisfying the relation (x, gc(x, z), z) =
Σc ∩ O(x, 0, z), thus Σc can be written as in (51). However, we still do not
have the regularity of gc. In order to prove that gc is smooth, we begin by
proving that the norm of grad(gc) is bounded in Ωc.

Let q ∈ Ωc be any interior point and consider a small open ball B =
BΩc(q, r) ⊆ Ωc such that Cyl∂y(∂B) has mean curvature vector pointing

inwards. Consider the following problem over B:{
R(w) = 0, in B
w|∂B = gc|∂B,

(53)

where R is the mean curvature operator for ∂y-Killing graphs. In other
words, we are looking for a minimal ∂y-Killing graph over a small ball on
Ωc that coincides with Σc on its boundary.

If Φ ··= gc|∂B was of class C2, α, we could simply use the existence result
due to M. Dajczer and J. H. de Lira, Theorem 1 of [DL]4 to obtain a solution
to (53). However, at this point we can only guarantee that Φ is of class C0,
so we need to use an approximation argument. Let (Φ±n )n∈N ⊆ C2, α(∂B)
be two sequences of C2, α functions, converging to Φ and such that

Φ−n ≤ Φ−n+1 ≤ Φ ≤ Φ+
n+1 ≤ Φ+

n , (54)

for every n ∈ N. By Theorem 1 of [DL], there are functions w±n ∈ C2, α(B)
with minimal ∂y-Killing graphs and such that w±n |∂B = Φ±n . From (54) we
obtain that the sequences (w±n )n∈N are also monotone, (w−n )n∈N is nonde-
creasing and (w+

n )n∈N is nonincreasing, both uniformly bounded. To obtain
the convergence of the sequences w±n to a solution of (53), we use some re-
cent gradient estimates for Killing graphs obtained by J.-B. Casteras and J.
Ripoll in [CR]:

Theorem 4.3 (Theorem 4, [CR]). Let M be a Riemannian manifold
and let Y be a Killing field. Let Ω be a Killing domain in M and let o ∈ Ω

4We notice that the hypothesis on the Ricci curvature on [DL] is used uniquely to obtain
an a priori estimate for the height of the graph, which is satisfied on our setting by the
maximum principle.
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and r > 0 such that the open geodesic ball BΩ(o, r) is contained in Ω. Let
u ∈ C3(BΩ(o, r)) be a negative function whose Y -Killing graph has constant
mean curvature H. Then there is a constant L depending only on u(o), r,
|Y | and H such that ‖grad(u)(o)‖ ≤ L.

All functions w±n have uniform bounds on their C0 norm, thus Theorem
4.3 above implies that there are uniform gradient estimates on compact
subsets of B. This implies that both sequences will converge on the C2

norm to a function w ∈ C2(B) ∩ C0(B), which is a solution of (53). Now,
just use the flux of ∂y and the same translation argument as before to obtain
that w coincides with gc in B, hence the gradient of gc is bounded on interior
points of Ωc, as claimed.

Next, we use the relation (x, gc(x, z), z) = (x, y, uc(x, y)) to prove that gc
is actually smooth up to the boundary, with the unique exceptions of p1, p2,
p1(c), p2(c) (where ∂Ωc is not smooth), and the finite number of points where
g is not differentiable. Note that uc is smooth up to the boundary (except
on the points where ∂∆ is not differentiable) and that the gradient of uc is
never horizontal on ∂∆, by the boundary maximum principle. Moreover, it
follows from last argument that grad(uc) never vanishes on interior points
of ∆, so gc is also smooth up to the boundary, with the exceptions above.

This proves that any minimal π-graph S with ∂S = Γc is a Killing graph.
It follows easily that Σc is unique, proving Claim 3. ♦

We proceed with the proof of Theorem 4.1, by noticing that that the
uniqueness of Σc, given by Claim 3, implies that the correspondence c 7→ gc
is continuous. Moreover, by its construction, we have that each gc satisfies,
on the boundary of Ωc,

gc(0, z) = gc(L, z) = 0, gc|αc = 0, gc(x, 0) = g(x).

Again, as Σc is a π-graph over ∆, it is contained on the π-cylinder over
∆, and this can be translated to the horizontal setting as the inequality

0 ≤ gc(x, z) ≤ g(x), (55)

for every (x, 0, z) ∈ Ωc. Moreover, the usual argument using flux of ∂y
shows that the sequence gc is monotonically increasing with c. In particular,
as it is bounded, the sequence will converge pointwise for some function
g∞ : Ω∞ → R, such that 0 ≤ g∞ ≤ g. Next claim shows that the convergence
is actually on the C2 norm, so Gr∂y(g∞) = Σ∞ is a minimal surface of
R2 oA R.

Claim 4. When c → ∞, the functions gc converge on the C2 norm to
g∞ : Ω∞ → R.

Proof of Claim 4. To prove this claim, we use the same argument of Claim
3, via gradient and height estimates for Killing graphs. Let K ⊆ Ω∞ be
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Figure 4: Ω∞ ⊆ P viewed horizontally: on each compact set K ⊆ Ω∞ there
are uniform gradient estimates.

a compact set in Ω∞ with C2, α boundary, as on Figure 4. As it holds
gc(x, z) ≤ g(x), it follows that the height of gc is uniformly bounded on K,
so we can use Theorem 4.3 to obtain an uniform bound for the norm of the
gradient of gc on interior points of K.

Note that (55), together with the assumption that the angle γ makes with
α at p1 and p2 is less than π/2, implies that every gc satisfies an uniform
gradient estimate also along the boundary of K. As gc|K ∈ C2, α(K) is
smooth up to the boundary, this implies an uniform estimate for the gradient
of gc on K.

Now, just take an exhaustion of Ω∞ by compact sets and, by using an
standard argument, we obtain that a subsequence of (gc) converges to g∞
on the C2 norm. In particular, as the sequence is monotone and converges
pointwise, it follows that the convergence is smooth on the whole Ω∞. ♦

From this claim we obtain that Σ∞ is a minimal surface of R2oAR, and
that its boundary is

∂Σ∞ = Γ∞ = γ ∪
(
{p1} × [0, ∞)

)
∪
(
{p2} × [0, ∞)

)
.

In order to finish the proof of Theorem 4.1, it remains to show that Σ∞ is
nowhere vertical and that it is unique. The uniqueness comes directly from
the fact that it was built as a Killing graph, and that every other surface
with such boundary is contained on the ∂y-Killing cylinder over Ω∞.

To show that Σ∞ is nowhere vertical, we go back to analyse the problem
using π-graphs. First, if there was an interior point p ∈ Σ∞ such that TpΣ∞
was vertical, Σ∞ and TpΣ∞ would be two minimal surfaces of R2 oA R

tangent to each other at p. Then, there are at least two curves, meeting
transversely at p on the intersection TpΣ∞∩Σ∞, so Σ∞ cannot be a π-graph
on a neighbourhood of p. Hence, it is a π-cylinder over some line segment5

5If β ⊆ R2 oA {0} is a smooth curve, the π-cylinder β × [0, ∞) is minimal if and only if
β is a line segment: to see this, just use the foliation of R2 oAR by vertical planes which
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Figure 5: The construction of the barrier R̃, by deforming ∂R over r3.

β contained on ∂∆. Secondly, if the point p ∈ ∂Σ∞ was a boundary point
where TpΣ∞ was vertical, then the boundary maximum principle would
reach to the same conclusion. Next claim is to show that Σ∞ meets π−1(γ)
uniquely on γ, so Σ∞ ⊇

(
β × [0, ∞)

)
is a contradiction.

Claim 5. Σ∞ ∩ π−1(γ) = γ.

Proof of Claim 5. To prove this, we use the same barrier technique of A.
Menezes, [Me]: Let γi be a smooth component of γ and let p ∈ γi be any
point. Consider L the vertical plane of R2 oAR containing the tangent line
to γi at p (this is well defined even for p ∈ ∂γi, as γi is smooth). As γ is
convex, this implies that ∆ is contained on the same connected component
of R2 oA R defined by L, and so does Σ∞.

Let, for c ≥ 0, uc : ∆ → R be as in (52). and let c0 = sup∆ u0. For
c2 > c1 > c0, consider a rectangle R ⊆ L with boundary ∂R = r1∪r2∪s1∪s2

given by two parallel horizontal segments r1 and r2 and two vertical segments
s1 and s2, such that s1 ⊆ {z = c1} and s2 ⊆ {z = c2}, that projects into
R2 oA {0} in a compact segment r 3 p with endpoints q1 = π(s1) and
q2 = π(s2), contained on the same half-space determined by {y = 0} (the
vertical plane containing α) and with q2 outside ∆, see Figure 5.

Let q3 ∈ π(R) be a point interior to the projection of R that is not in
∆. Then, q̃3 = π−1(q3) ∩ r2 divides r2 into two compact segments r3 ∪ r4,
r3 projecting entirely outside ∆ and with p ∈ π(r4).

are parallel to the vertical plane generated by the endpoints of β. It also follows from the
more general formula H(x, y, z) = kg(x, y)e−ztrace(A), where kg(x, y) denotes the geodesic
curvature of β on the point (x, y, 0). The proof of this formula is a simple computation.
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As L it is transversal to a (horizontal) Killing field, it is stable. In par-
ticular, it follows from the useful criteria due to D. Fischer-Colbrie and R.
Schoen, Theorem 1 of [FS] (also proved on Proposition 1.32 of the book by
Colding and Minicozzi, [CM]) that R is strictly stable, thus small perturba-
tions of ∂R give rise to minimal surfaces with the perturbed boundary.

Change r2 by making a parallel translation of r3 on the direction of the
half-space that contains Σ∞, whose projection still does not intersect ∆,
joined by two small segments and denote such curve r̃3, in such a way that
r3 ∪ r̃3 bounds a small rectangle on the horizontal plane {z = c2}. We
assume this perturbation is small in such way that its projection does not
intersect ∆. Let R̃ be a minimal surface of R2 oA R whose boundary is the
perturbed rectangle r1∪ r̃3∪r4∪s1∪s2. Such surface is nowhere vertical and
its contained in the convex hull of its boundary, in particular it is contained
in {z ≥ c1} and in the same half space that Σ∞ with respect to L.

It is easy to see that π(R̃)∩∆ 6= ∅, otherwise R̃∩R would have a interior
contact point. Moreover, R̃ is above u0 on π(R̃)∩∆, by the construction of
R̃. Then, if Σ∞ ∩ π−1(γi) 6= γi, we would have that Σ∞ ∩ R̃ 6= ∅, thus, for
some ` > 0 there would be a first contact point between Σ` and R̃. As ∂Σ`

does not intersect the convex hull of ∂R̃, it does not intersect R̃. Moreover,
neither ∂R̃ can intersect Σ`, as this would imply such point would be in
the plane L, so Σ` would have a vertical tangent plane. Then such contact
point would be interior for both, reaching to a contradiction that proves the
claim. ♦

From Claim 5 and from the argument previously done, we obtain that
Σ∞ is a π-graph, nowhere vertical, which finishes the proof of Theorem 4.1.
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