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AN EXTENSION OF RUH-VILMS THEOREM FOR
HYPERSURFACES IN SYMMETRIC SPACES AND SOME
APPLICATIONS
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ABSTRACT. This paper has two main purposes: First, to extend a well known
theorem of Ruh-Vilms in the Euclidean space to symmetric spaces and, sec-
ondly, to apply this result to extend Hoffman-Osserman-Schoen Theorem (HOS
Theorem) to 3—dimensional symmetric spaces. Precisely, it is defined a Gauss
map of a hypersurface M™~! immersed in a symmetric space N" taking values
in the unit pseudo sphere 3™ of the Lie algebra g of the isometry group of N,
dimg = m + 1, and it is proved that M has CMC if and only if its Gauss
map is harmonic. As an application, it is proved that if dim N = 3 and the
image of the Gauss map of a CMC surface S immersed in N is contained in
a hemisphere of $" determined by a vector X, then S is invariant by the one
parameter subgroup of isometries of N of the Killing field determined by X. In
particular, it is obtained an extension of HOS Theorem to the 3—dimensional
hyperbolic space, which, as the authors know, had not been done so far.

In the paper it is also shown that the holomorphic quadratic form induced
by the Gauss map coincides (up to a sign) with the Hopf quadratic form
when the ambient space is H3, R3 and $3 and with the Abresch-Rosenberg
quadratic form when the ambient space is H? x R and $2 x R providing, then,
an unified way of relating Hopf’s and Abresch-Rosenberg’s quadratic form with
the quadratic form induced by a harmonic Gauss map of a CMC surface in
these 5 spaces.

1. INTRODUCTION

A well known theorem due to Ruh-Vilms [RV] establishes that an orientable
immersed hypersurface S in R™, n > 3, has constant mean curvature (CMC) if and
only if the Gauss map N : § — §"~! of S satisfies the equation

(1.1) AN = —|B|’N

or, equivalently that A is a harmonic map, where B is the second fundamental
form of S 1.

In [BR] the second author of the present paper with F. Bitttencourt defined a
Gauss map of an orientable hypersurface on ambient spaces of the form N := G/Kx
R"™, n > 0, where G/K is a compact symmetric space. The Gauss map is defined
by taking the horizontal lift of the unit normal vector field of the hypersurface to
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G x R™ followed by a translation to the unit sphere in the Lie algebra of G x R™.
Ruh-Vilms theorem is then extended to hypersurfaces of V. That is, they prove that
a hypersurface of N has CMC if and only if this Gauss map is harmonic (Corollary
3.4 of [BR]).

In the present paper we extend the construction of the Gauss map done in [BR] to
any symmetric space, not necessarily reducible nor compact and of any dimension,
obtaining an extension of Ruh-Vilms theorem to these spaces (Theorem 2.3 and
Corollary 2.4). Our result generalizes some previous works, as [Ma] and [EFFR].

We recall that an application of Ruh-Vilms theorem in the Euclidean 3—dimensional
space is a theorem of Hoffman-Osserman-Shoen (HOS Theorem for short), which
reads:

Theorem (Hoffman-Osserman-Schoen)

Let S be a complete surface of constant mean curvature immersed in R3. If the
image of the Gauss map of S lies in a hemisphere, then S is a plane or a cylinder.

Sketch of the proof: By hypothesis, there is V' € $2 such that u := (N, V) > 0; from (1.1)
it follows that the lift & of u to the universal covering S of S is a bounded superharmonic
function on S. If S has the conformal type of the plane then v must be constant and then
S is a plane or a cylinder. If S has the conformal type of the disk then, by the maximum
principle, either > 0 everywhere or & = 0. But from (1.1) we see that u satisfies the
PDE A% — 2Ku + P = 0 where K is the sectional curvature of S and P = 4H? > 0
which is in contradiction with Corollary 3 of [FS] that asserts this PDE has no positive

solutions if § is conformal to the disk.

H. Rosenberg and J. Espinar in [ER] remarked that in product spaces M? x R
the condition of the Gauss map being contained in a hemisphere can interpreted as
of the angle function v = (n, 9;) having a sign, where 7 is a unit normal vector on
the surface. They then classified all these CMC surfaces in terms of the infimum
¢(S) of the sectional cuvature at the points of M that are in the projection of the
surface S. Precisely, they proved that if ¢(S) > 0 and H # 0 then S is a cylinder
over a complete curve with curvature 2H. If H = 0 and ¢(S) > 0 then S must
be either a vertical plane, a slice M x {t}, or M = R? with the flat metric. We
note that when M = R? these results recover HOS theorem. When ¢(S) < 0 and
H > \/—¢(S)/2, then S is invariant under the group of isometries generated by the
Killing field d; and is a vertical cylinder over a complete curve on M? of constant
geodesic curvature 2H.

In [BR], using the extension of Ruh-Vilms theorem to $* and to $? x R it is
obtained an extension of HOS theorem to these ambient spaces. In the present
paper, with the extension of Ruh-Vilms theorem and, hence, of Corollary 3.4 of
[BR], to any symmetric space, HOS theorem was extended to include the ambient
spaces H? x R and H? as well. We note that an extension of HOS theorem to the
hyperbolic space, despite all these previous results, had not been obtained via a
Gauss map so far.
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We think that it is important at this point to make two observations. Our paper
and the one of Espinar and Rosenberg both extend HOS theorem to H?(—1) x R,
and both require a lower bound for the mean curvature. In [ER] it is H > 1/2 which
is better than the one that follows from our result, namely, H > 1/v/2. The lower
bound [ER] is in fact optimal among CMC surfaces in ambient spaces of the form
M? x R. Our case is optimal among CMC surfaces in 3—dimensional symmetric
spaces since in H?(—1) the lower bound is 1, which is optimal (see the last remark
of the paper).

Secondly, Espinar/Rosenberg paper gives a description of a CMC surface in
terms of the angle that the normal vector of the surface makes with the Killing
field 0;. In the present paper one can replace d; by any Killing field of H?(—1) x R
(and $2(1) x R): If A/(S) is included in a hemisphere of the unit pseudo sphere of
the Lie algebra of SO(1,2) x R determined by a vector X (that is, (n, X) > 0) then
the surface is invariant by the Killing field of H? x R induced by X. For example,
if

0 0 0
x=|0 0 ¥£|xo
0 —¥2 o

2
then the surface is rotationally symmetric around a vertical geodesic and, then, is
generated by an ODE solution curve of a totally geodesic plane containing a vertical
line.

Another application of Ruh-Vilms theorem in R? is the well known classical Hopf
Theorem ([Hol), namely:

The round sphere is the only CMC topological sphere in R>.

Sketch of the proof: If S is a CMC surface in R? then Ruh-Vilms theorem implies that
the Gauss map N of S is harmonic. Then N induces a quadratic holomorphic ¢ form in
S (see 10.5 of [EL]) which coincides with the so called Hopf differential as it is easy to
see. Then if S has zero genus, ¢ must be zero everywhere which implies that S is totally
umbilic and then a round sphere.

Concerning Hopf’s theorem, U. Abresch and H. Rosenberg in [AR] extended it
to CMC surfaces in H? x R and to $2 x R defining an ad hoc quadratic form Q in
these spaces (presently well known as Abresch-Rosenberg quadratic form), namely:

Q=2HA—T, resp. Q=2HA+T, (1.1)

where H is the mean curvature of the surface, A is the Hopf differential and
T = (dh ® dh)?*°, with h standing for the height function. They prove that Q is
holomorphic when the surface is CMC. In particular, @ = 0 holds if S is a CMC
topological sphere; from this fact, they obtain that a CMC sphere is rotationally
symmetric.

Abresch and Rosenberg result raised a natural question of whether their qua-
dratic form Q could be induced by a geometric Gauss map for surfaces in the spaces
H? x R and $? x R, this Gauss map having the property of being harmonic if (and
only if hopefully) the surface has constant mean curvature.
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This question has been answered in the affimative first in the space H? x R and
for CMC 1/2 surfaces by I. Fernandez and P. Mira in [FM]. They introduce the
hyperbolic Gauss map G : S — H? for any surface S C H? x R nowhere vertical
and show that if S has CMC H = 1/2, then G is harmonic. Moreover, its induced
holomorphic quadratic differential in the surface coincides (up to a sign) with the
Abresch-Rosenberg form. But they go further and use these previous results to
obtain another quite interesting part of their work: To prove the existence of CMC
1/2 surfaces in H? x R with prescribed hyperbolic Gauss map and to show that any
holomorphic quadratic differential on an open simply connected Riemann surface
can be realized as the Abresch-Rosenberg differential of some complete surfaces
with H = 1/2 in H? x R.

As far as the authors know, the above question in the space $2 x R was open
until recently when the M. L. Leite and the second author of the present article
proved in [LR] that the quadratic form induced by the Gauss map defined in [BR]
coincided with the Abresch-Rosenberg form on CMC surfaces in $2 x R. Moreover,
they used this Gauss map to motivate an ad hoc construction of a Gauss map in
H? x R and obtained the same result.

With the Gauss map construct in this paper and with Theorem 2.3, we have
the following unifying result: The quadratic form induced by the Gauss map in
a surface immersed in a space of constanct sectional curvature coincides with the
Hopf’s quadratic form and in a suface immersed in H? x R and in $ x R it coincides
with the Abresch-Rosenberg quadratic form; moreover, the surfaces have CMC and
these forms are holomorphic if and only if their Gauss maps are harmonic. It seems
to the authors that the converse of this equivalence is not necessarily true for the
Gauss map constructed in [FM].

To close with this introduction, we observe that generalizations of the Gauss
map have been defined in many different spaces and in many different ways. These
generalizations have been proved to be particularly useful in describing and under-
standing CMC surfaces in the 8 models of Thurston’s geometries and more recently
in a broad class of 3—dimensional Lie groups endowed with a left invariant metric.

Quite interesting and deep results have been obtained in a series of papers by
B. Daniel [Da2], by B. Daniel, I. Ferndndez and P. Mira in [DFM], by B. Daniel
and Mira [DM] and its generalization by W. Meeks III in [Me]. We finally mention
joint works of W. Meeks III, P. Mira, J. Pérez and A. Ros [MP, MMPR, MMPR2],
where using the left invariant Gauss map on a metric Lie group (i.e. a Lie group
endowed with a left invariant metric) the authors are able to show strong results
concerning CMC spheres on these ambient spaces.

Since all the previous results hold in 3—dimensional ambient spaces, but which
not include the hyperbolic space, we think that the main contribution of present
paper is the construction of a Gauss map in symmetric spaces of any dimension,
to extend Ruh-Vilms theorem to these spaces, and to obtain a broader version of
HOS theorem which includes, in particular, the hyperbolic space. Moreover, the
Gauss map introduced in the present paper might be used, hopefully, to obtain
some similar results as those in the works mentioned in the previous paragraph.
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This paper is organized as follows: In Section 2.2 it is introduced a Gauss map for
hypersurfaces of a symmetric space and it is proved that an orientable hypersurface
M < N has CMC if and only if NV is harmonic (Corollary 2.4). In Section 2.3 we
obtain explicit formulas for A~ when the ambient space is R", $" and H".

In Section 3, we study the particular case when N has dimension 3 and we
analyze the quadratic complex form induced by N, denoted by Qx. We then
obtain that Qx  coincides with the Hopf differential when N is H3, R3 or $3 and
with the Abresch-Rosenberg quadratic form when N is H? x R or $2 x R.

Finally, In Section 4, we use the Gauss map N to extend HOS theorem when M
is a surface immersed in a symmetric space of dimension 3.

2. THE GENERALIZED GAUSS MAP OF A HYPERSURFACE ON A SYMMETRIC SPACE

In this section we introduce the definition and discuss some aspects of the Gauss
map N of a hypersurface M"~! immersed in a symmetric space N. We use the
same construction of [BR] for hypersurfaces in G/K x R™ but instead of asking for
a bi-invariant Riemannian metric on G, we show that N = G/K is the quotient of
a group G acting transitively on N via isometries and K is the isotropy subgroup of
G at a fixed point of N and G admits naturally a bi-invariant pseudo Riemannian
metric. We relate the Laplacian of A/ and the mean curvature of M and as a con-
sequence obtain that A is harmonic if and only if M has constant mean curvature.
We finish the section giving an explicit formula for A in space forms.

Throughout the text a hypersurface is always understood as being immersed.
We will refer to the generalized Gauss map simply as the Gauss map.

2.1. Preliminaries. Let IV be a Riemannian symmetric space. We begin by ob-
serving that N is isometric to a quotient N = G/K, where G is endowed with a
bi-invariant pseudo Riemannian metric and the metric in G/K is the one induced
by the projection # : G — G/K in such way it becomes a pseudo Riemmanian
submersion.

Indeed: Assume, at first, that IV is an irreducible symmetric space. Let G =
ISO(N)? to be the connected component of the identity on the isometry group of
N and set K as the isotropy group of some fixed point on N. Then N is isometric
to G/K, where the metric on G/K (up to a multiple factor) is the descent of the
Killing form of the Lie algebra of G, which is a bi-invariant pseudo Riemannian
metric (see [He]).

Now, if N decomposes as the Riemannian product of irreducible symmetric
spaces with a R™ factor

N =Ny XNy x...x Ny x R™,

each N; = G;/K; can be written as above. Then, if we set G = Gy x ... X G; x R™
and K = K; x ... x K; x {0}, follows that N is isometric to the quotient G/K.
Since the metric of R™ is bi-invariant and the Riemannian product of bi-invariant
metrics is also bi-invariant, the claim is proved.

Herein we will assume that G is endowed with a bi-invariant pseudo-Riemannian
metric that descends onto G/K as a Riemannian metric via the projection 7. We
also assume that dim(G) = n + k where n = dim(N) and k& = dim(K) and denote
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by g the Lie algebra of G. These assumptions on G and G/K will be assumed
throughout the paper.
Each element g € G acts on G/K as an isometry via

(2.1) g(m(x)) = w(Ly(7)) = 7(Ra(9)), ¢ € G,

and this action is transitive, where L, and R, are the left and the right translations
on G. Any vector V € g defines a Killing vector field on G/K, here denoted by
¢(V), namely

(22 V)0 = exp V)0)| . pE G/,
t=0

where exp : g — G is the Lie exponential map.
Let p € G/K and let z € 7~ !(p). By (2.1) we have

exp(tV) (p) = exp(tV) (m(z)) = m(R(exp(tV)))
and then

(2:3) C(V)(p) = dma(d(Ry)e(V)).

Given xz € G, a vector u € T,G is called vertical if u € T,xK and it is called
horizontal if u € (meK)J'. It follows that a vector u € T,G is vertical if and only
if its projection dm,(u) = 0.

We now follow the construction of [BR]. For z € G, set £, := dma (1, ()~ BY

definition, £, is a linear isometry between horizontal vectors on T, G and Ty () (G/K).
We then define T on T (G/K) by

F .

(2.4) p: T,G/K — g

u = d(Ry—1), 05 (u).
where x is any point on 7! (p) and p € G/K.

Proposition 2.1. For each p € G/K, the map I', is well-defined, is linear and
preserves the metric.

Proof. Consider x, y € 7~ 1(p). There exists h € K such that x = Ry (y). Then, for
any u € T,G/K, we have

u= dﬁyﬁgjl(u) =d(mo Rh)yfy_l(u) = dmd(Rh)yE?;l(u).

Since h € K, Ry, is an isometry of G that additionally preserves horizontality.
From the previous equation we obtain £, ! (u) = d(Rp),¢, ' (u) and hence

d(Ry—1)oly " (u) = d(Ry-1)od(Rp)y €, (u)
= d(R,-1 0 Rp)yl, " (u)
= d(Ry-1 )yl (),

what proves that I',, is well defined. That it is linear and preserves the metric
follows directly from the definition of Z, and from the fact that the projection is a
pseudo Riemannian submersion. O
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We may now define the Gauss map of an oriented hypersurface M of N by setting

N: M — §"th=lCg

(25) p oo ),

where 7 is a fixed unit normal vector field on M.
The next result gives a characterization of the Lie subgroups of G that preserve
M in terms of the Gauss map of M. This proposition is fundamental for the paper.

Proposition 2.2. Let M"~! be an orientable hypersurface of G/K and let N :
M — $"Tk=1 C g be its Gauss map. Then

Hi= (N (M))" ={w € g; (w, N(p)) = 0Yp € M}

is a Lie subalgebra of g and M is invariant under the Lie subgroup H of G whose
Lie algebra is ‘H. Conversely, if M is invariant under a Lie subgroup H of G, then
H C (N(M))", where H is the Lie algebra of H.

Proof. First we notice that if w € (M(M))* then, for all p € M,

0= (w, N(p))
= (d(Rz)ew, ;' (n(p)))
= (C(w)(p), n(p)),

so ((w)(p) € T,M and therefore ((w) is a vector field tangent to M. Now if
v, w € N(M)L, then ((v), {(w) are two vector fields on M, thus [¢(v), ((w)] is
also a vector field on M. Since [((v), {(w)] = (([v, w]), for p € M we have that

0= (¢(lv, w])(p), n(p)
= (" (¢([v, w)(P)), £ (n(p)))-

But we also have

E;I(C([v, wl)) = Z;ldﬂ'md(Rm)e[v,w]
= (d(Ry)elv, w])h7

and then

0= <[’U, w]7 N(p»,

proving that [v,w] € N'(M)+. Hence H is a Lie subalgebra of g.

Now let H be a subgroup of G that leaves M invariant and let H be the Lie
algebra of H. Then H acts on M as Killing fields and therefore (¢ (H),n) = 0. It
follows that

0= (((H), m) = (K, N),
proving that H# C N(M)+. O
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2.2. Harmonicity of N’ and the mean curvature of M. It is well known that
a hypersurface of R™*! has constant mean curvature if and only if its Gauss map
is harmonic. This follows directly from the well known formula

(2.6) AN = —gradH — || B|*N

where ||B|| is the norm of the second fundamental form B of M.

This formula was extended to hypersurfaces in a Lie Group in [EFFR] and to
a homogeneous space G/H where G has a Riemannian bi-invariant metric and H
is a closed subgroup on [BR]. We will now present a more general formula for the
Laplacian of the Gauss map given by (2.5).

Theorem 2.3. Let M be an immersed orientable hypersurface of G/K and let
N : M — §"tF=1 C g be the Gauss map of M, where g is the Lie algebra of G.
Then

(2.7) AN (p) = —nl',(gradH) — (|| B|* + Ric(n)) N (p)

for all p € M, where 1 is a normal vector field satisfying (n, n) = 1, Ric(n) is
the Ricci curvature of G/K with respect to n and ||B|| is the norm of the second
fundamental form B of M in G/K.

Proof. Fix V € g and define the function

fv: M
(2.8) ;

— R
=

N(p), V)

For any p € M we have fy(p) = (N(p), V) = (n(p), C(V)(p)). As (V) is a
Killing field on G/K, it follows from Proposition 1 of [FR] that

(2.9) Afy = —n{gradH, ((V)) — (|| BII* + Ric(n)) fv-.
But we have that (gradH, ¢(V)) = (I',(grad(H)), V), and then

(210)  (AN(p), V) = Afv = (~nly(gradH) — (|| B||* + Ric(n)) N (p), V).
As (2.10) holds for any V' € g we have (2.7), proving the theorem. O

Corollary 2.4. Let M be an orientable hypersurface of G/K and let N : M —
§7 k=1 C g be the Gauss map of M. Then the following alternatives are equivalent:

i.: M has constant mean curvature.
ii.: The Gauss map N : M — $"T*~1 is harmonic
iii.: N satisfies the equation

(2.11) AN (p) = = (I BII* + Ric(n)) N (p)-

2.3. The Gauss map on spaces of constant sectional curvature. In the
Euclidean case, our Gauss map coincides with the usual one, as the horizontal lift
is simply the identity. We then pass to consider the spherical and hyperbolic cases.

The Gauss map of M"~! immersed in $".
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Let O(n+1) be the orthogonal group of isometries of R**! that fixes the origin.
The Lie algebra o(n + 1) of O(n + 1) consists of the (n+ 1) x (n + 1) matrices u
satisfying u +u? = 0, where u” denotes the transpose of the matrix u. Consider
the bi-invariant metric on O (n + 1) given by

1 1
(u, v) = itr(uvT) =-3 tr(uv), u, v € o(n+ 1).

Then O (n+ 1) /O (n) is isometric to the unit sphere $” centered at the origin of
R"*! where O (n) is the subgroup of matrices A of O (n + 1) such that Ae; = ey,

{e1, €2, ..., €n11} being the canonical basis of R**1. We obtain next an explicit
expression for I' : T$"™ — o(n + 1).
Choose p = (21, 2, ..., Tna1) € $™. Let {vo, v3, ..., vpe1} be an orthogonal
+ +

basis of T,,$™ in such way that the matrix (pvavs ... vp41) € O(n+ 1). Then we
define

T V12 cee Vin+1
T2 V22 ... U2pgl
xTr =
Tpn+l Unt12 --- Upnglntl
where v; = Z?:Jrll vije; € R™ and it follows that m(z) = p.
Now, let v = (u1, ug, ..., upt1) € T,3" and write u = Z?:;(u - v;)v; where
( - ) is the inner product of R"*!. Let Z € o(n)* be given by
0 —(u-v2) ... —(u-vpt1)
(u-vg) 0 e 0
Z = . . . .
(u - Vpt1) 0 e 0

and set @ = d(L;).Z € (T,xO(n))*. In coordinates, & = x.Z is the usual matrix
multiplication and is represented as

Uy —z1(u-v2) ... —zi(u-vpg1)
N U, —zo(u-vy) ... —za(u-vnyr)
u =
Unt1 —py1(u-ve) oo —xpi1(u- vpgr)
where
n+1

Ui = Z vij(u . Uj).
Jj=2

Now, we claim u is the horizontal lift of u. To see this, just apply the projection:

n+1 n+ln+1 n+1 n+1
dﬂz(a) = Z Uiei = Z Z vij(u . vj)ei = Z(U . Uj) Z Vij€;
i=1 i=1 j=2 j=2 i=1
n+1

= Z(u -0V = u.



10 A. RAMOS AND J. RIPOLL

This equation shows not only that % is the horizontal lift of u on T,O(n + 1),
but also that U; = (u - e;) = u;. Then, it becomes simple to find an expression for
Ip(u) = d(Ry-1),(u) = a.z™'. As z € O(n + 1) we have that 2! = 27. Using
again that U; = u;, the matrix expression for I'y(u) is

0 U1T2 — UL cee UNTp41 — Up4121

UL — U T2 0 oo URTp] — Up+1T2
Lp(u) =

Upt1T1 — U1 Tyl Upp1T2 — U2Tpg1 - .- 0
If we let ® : R**! x R"*t — M,,.1(R) be given by

(2.12)
0 T2 ... 0 1 1 1 1 0 Yz ... 0
B I A EEE U I B
0 0 ... Tnp 1111 0 0 ... Yp1
Y1y Y21 S Yn+1T1
Y1x2 Y22 ce. Yn4+122
Y1Tp+1 Y2Tnt+1  --- Yn+1Tntl

then we can write
(2.13) Ty (u) = ®(u, p) — B(p, u).

We then obtain an explicit matrix expression for the Gauss map of a hypersurface
of §™:

Proposition 2.5. Let M™~! be an orientable hypersurface of $" oriented with
respect to a normal unit vector field . Let N : M — g1 o(n + 1) be the

Gauss map of M. Then

(2.14) N(p) = @(n(p),p) — 2(p,n(p))
where @ is given by (2.12).

The Gauss map of M"~! immersed in H".

Consider the pseudo inner product (*) on R"*! given by

(x*y) = —21y1 + T2y2 + .- . + Tpnt1Ynt1,
Let us introduce the following notation: Fori=1,2, ..., n+1,let {, = —1 and
& = 1 otherwise. Then we can write (x) as

n+1

(@xy) = Z &ixiy-
i=1
In the Lorentz space L™ = (R"T!, (x)),

H" :={z € L"*"; (z+2) = —1 and z; > 0},
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endowed with the metric of I”*! is the hyperbolic space with constant sectional
curvature —1. Consider

O(1,n) = {g € Mys1(R); (gz * gy) = (x*y), Vo, y € L"*" and g (H") = H"}.

In terms of matrices, the property that characterizes O(1,n)is M € O(1,n) <=
M~' =IMTI, where

-1 0 0
~ 0 1 0
I= ,

0 0 1

The Lie algebra of O(1,n), denoted by 0(1,n), can be written as

0 a ... an
a1
o(l,n) = : N ,Ac€o(n), a, as, ..., a, €R
QAn
Note that v = (u;;) € o(1,n) & w;; = —&&uj. We introduce a pseudo-

Riemannian bi-invariant metric { , ) on O(1,n) by extending the non degenerate
bilinear form (u, v) = 1 tr(uv) on o(1,n) to O(1,n) via left translations.

With such metric, setting O(n) = {z € O(1,n); g(e1) = e1}, H" is isometric to
the quotient O(1,7n)/O(n). In the next result we obtain an explicit expression for
I':TH" — o(1,n):

Lemma 2.6. Let p € H".Then, if uw € T,H", it holds

(215) Fp(u) = \Ij(p7 ’LL) - \I/(u7p)7
where ¥ : L x LY — M, 1(R) is given by

1 0 0 -1 1 1 1 (75 0 0
0 To ... 0 -1 1 1 1 0 Ya ... 0
Yy =1 . . . : -1 1 1 1 Do :
0 0 ... Zpn -1 1 11 0 0 ... Yops
—Y1x1 Yo cee Yn+121
—Y1T2 Y29 e Yn+1T2
(2.16) = . . .
—Y1Tpt+1 Y2lnt1  --- Ynt1Tntl

Proof. The proof is similar to the spherical case. We write down some steps of

it. Set p = (1, x2, ..., Tpy1) € H” and u = (u1, ug, ..., Upy1) € T,H". Let
{va, v3, ..., Up41} be an orthogonal basis of T,H" in such way that the matrix
(pvavs ... vpt1) € O(1,n). Write each v; in coordinates as v; = (vij, Vaj, ..., Unt1;)

and define
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& V12 cee Vin+1
T2 V22 cee V2 n+1
xTr =
Tpn+l Unt12 oo Uptlntl

Then we have € O(1,n) and 7(x) = p. As in the spherical case, define Z € o(n)~+
by

0 (u*xvy) ... (Uxvpi1)
(u * v9) 0 0
Z = : . . .
(u* Vpg1) 0 0

Then d(Ly)eZ € (ToxO(n))", dry(xZ) = u and hence €51 (u) = 2Z. It follows
that I'(u) = Zz~!. In terms of matrices,

0 U2X1 — UTT oo Up41T1 — UL Tp+1

—U1T2 + U2Xq 0 oo Up41T2 — U2Tn+1

Fp(u): —U1T3 + U3T UgL3 — U3T2 st Up4+1T3 — U3Tp41
—UITp41 + Upp1T1 U2Tpgp1 — Up£1T2 .- 0

= \I/(p, U) - \If(u,p)

O
Proposition 2.7. Let M be a hypersurface of the hyperbolic space H™ oriented
with respect to an unitary normal vector field n. Let N : M — gl -1 Co(l,n)

be the Gauss map of M. Then it holds

(2.17) N(p) = ¥(p,n(p)) — ¥(n(p),p),
where ¥ is given on (2.16).

3. THE QUADRATIC FORM INDUCED BY N ON SURFACES IMMERSED IN
SYMMETRIC SPACES OF DIMENSION 3

It is a classic result due to Heinz Hopf [Ho] that in the Euclidean three space,
the Hopf differential A of a surface M (that is, the complexification of the traceless
part of the second fundamental form of M) is holomorphic if and only if M has
constant mean curvature. This result is also true in H* and $* [Ch], but it is false
in general. In [AR] U. Abresch and H. Rosenberg “perturbed”the Hopf differential
and defined a quadratic differential form Q@ = 2HA — ¢T of a surface M immersed
in M2(c) x R (H is the mean curvature of M, A is the Hopf differential and
T = (dh®dh)?°, h standing for the height function), and extended Hopf’s theorem
for CMC spheres to these ambient spaces using Q instead of A. More generally,
in any homogeneous space of dimension 3 whose isometry group has dimension at
least 4, there exists an quadratic form that is holomorphic for any CMC surface
[AR2, FM2], and in Sols there exists a quadratic form (which is holomorphic in
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the case of a minimal surfaces) that plays an important role to prove uniqueness of
CMC H-spheres [DM, Me].

In R? the differential of the Gauss map g : M — $2 coincides (up to a sign)
with the shape operator of the surface, and the complex quadratic form induced
by g is the Hopf differential A. In [LR], the authors used the Gauss map A of a
surface M in $? x R, as defined in [BR], to show that the quadratic form induced
by N was actually the Abresch-Rosenberg quadratic form Q. They also defined an
“ad hoc” Gauss map N, which they called twisted normal map, for a surface M in
H? x R and again obtained that the quadratic form induced by N was equal to the
Abresch-Rosenberg quadratic form Q of M.

In this section we will consider a surface M immersed in a 3-dimensional sym-
metric space N := G/K satisfying the assumptions of Section 2. It will be shown
that the complex quadratic form induced by A on M is the Hopf differential when
N is H3, R? or $2 and the Abresch-Rosenberg quadratic form when N is H? x R
or $2 x R. Moreover, we show that the Gauss map A coincides with the twisted
normal map defined in [LR], when N = H? x R.

Let M be an orientable surface in N oriented with respect to a normal unitary
vector field . Let p € M and let F': U C C — M be a conformal structure on a
neighborhood of p. If z = z + iy is a complex coordinate system, then

<Fx; Fx> = <Fy, Fy> = E > 0 and <Fm’ Fy> = 0’
which implies

(F., F,) = (Fz, Fz) =0 and (F,, F5) = E/2.
We notice the lower index here denotes the usual derivatives and we are con-
sidering 2F, = F, — iF,. Under this notation, we define a tensor field @ by
Q(X,Y)(p) = (dN,(X), I',(Y)) and the complex quadratic form induced by N as

(3.1) Qi = (N, T)*® = (N, T(F.))d=".

Now, if A,, is the shape operator of M, the Hopf differential of M (see [Ho]) is
defined likewise:

A= (A, (F,), F.)d2".

3.1. The quadratic form on $3. First, we relate the derivative of the Gauss map
of a surface M in $3 with the shape operator of M.

Proposition 3.1. Let M be an orientable surface in $* oriented with respect to a
normal unitary vector field 7 and let N': M — $° C 0(4) be its Gauss map. Then
for any p € M and X, Y € T, M it holds

(dNp(X), Tp(Y)) = —(4y(X), Y),
where A, is the shape operator of M.
Proof. Let M be as above. Let p e M and X, Y € T,M and let o : (—¢,¢) - M
be such that «(0) = p and &/(0) = X. Set N (¢) = N(«a(t)) and n(t) = n(a(t)).
From Proposition 2.5 we have
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Hence

dN(X) = =@ (Ay(X),p) + 2(n(p), X) — (X, n(p)) + 2(p, Ay(X)),

as 7'(0) = Vxn = —A,(X). On the other hand, we also have I',(Y) = ®(Y,p) —
®(p,Y). An useful (and easy to check) identity concerning ® is

(3.2) tr(®(z,u).®(y,v)) = (z-v)(y - u), Vo, y, u, v € R*

which implies the identities:

r(@(4,(X),p)2(Yp) = 0 (4,(X),) = x(®(4,(X),p)2(p, )
w(@(n(p), X)2(Y.p)) = 0 0 = (@(n(p). X)2(p.Y))
w(®(X,p)0(Y.p) = 0 0 = t(@(X,n(p)B(p,Y))
(B(p, 4,(X)(Y.p) = (4,(X),Y) 0 = tr(@(p, Ay(X))b(p,Y))
It follows that
(AN, (X), Ty(¥) = = 3 trldA (X)T,(V)
= —(4,(X), V)

O

An immediate consequence of Proposition 3.1 is a generalization of the result for
the classical Gauss map, whose derivative coincides - up to a sign - with the shape
operator, here it is shown that the projection of N* back to the sphere coincides
with the shape operator. More precisely, we have:

Corollary 3.2. Let M be a surface in $° oriented with respect to 7 an unitary
vector field normal to M and let N : M — $° C 0(4) be its Gauss map. Then, for
any x € O(4) such that 7(z) € M it holds

dﬂxd(Rx)edNﬂ(m) = —An.
We then have the following theorem:

Theorem 3.3. Let M be a surface immersed in $° and let N': M — $° C o(4) be
its Gauss map. Then the following alternatives are equivalent:

i.: M has constant mean curvature;
ii.: N is harmonic;
iii.: The complex quadratic form Qa induced by N on M is holomorphic.

Proof. Let F: U C C — M be a conformal structure on a neighborhood of a point
p € M. The complex quadratic form induced by N at p is given by On(p) =
(N, Tp(F,))d22.

It follows from Proposition 3.1 that Qar coincides (up to a sign) with the Hopf
differential A of M on $3. Therefore, Qn is holomorphic if and only if M has
constant mean curvature [Ch]. The equivalence between CMC and harmonicity of
the Gauss map had already been obtained in the more general case of Corollary
2.4. This proves the theorem. (I
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3.2. The quadratic form on 3. Following the steps of the last section, we first
relate the derivative of the Gauss map N with the shape operator of M. Then
we obtain that the complex quadratic form induced by N, Qus, coincides with the
Hopf differential A of M.

Proposition 3.4. Let M be an orientable surface in H? oriented by a normal
unitary vector field n and let N : M — $° C o(1,3) be its Gauss map. Then for
any p € M and X, Y € T, M it holds

(dNp(X), Tp(Y)) = =(4,(X), V).

Proof. The proof to this proposition is analogous to the proof of Proposition 3.1,

with the only difference that here one uses (p * p) = —1 and the equation
(3.3) tr(U(z, u)¥(y,v)) = (z*v)(y *u)
instead of (3.2). O

As a consequence, similarly to the spherical case, we obtain:

Corollary 3.5. Let M be an orientable surface in H? oriented by an unitary vector
field 7 normal to M and let N': M — $° C o(1,3) be its Gauss map. Then, for
any x € O(1,3) such that w(z) € M it holds

Ao d(Ry)edNop () = — Ay

Observing that the quadratic form induced by A coincides with the Hopf differ-
ential A, we obtain an analogous of Theorem 3.3 to the hyperbolic space:

Theorem 3.6. Let M be a surface immersed in H3 and let N': M — 8° C o(1, 3)
be its Gauss map. Then the following alternatives are equivalent:

i.: M has constant mean curvature;
ii.: N is harmonic;
iii.: The complex quadratic form Qun induced by N on M is holomorphic.

3.3. The quadratic form on H? x R and on $2 x R. In this section we prove
a result analogous to Theorems 3.3 and 3.6 for a surface M immersed in a product
space 82 x R or H2 x R. We will prove that if M has constant mean curvature,
then the quadratic form induced by N is holomorphic. In order to prove this result
we will show that the complex quadratic form induced by the Gauss map of M
coincides with the Abresch-Rosenberg quadratic form. When N = $2 x R, our
construction of the Gauss map coincides with the one in [BR], therefore Theorem
3.1 of [LR] shows this result. Thus, we focus when M is a surface immersed in
H? x R, and we relate N with the twisted normal map of M, introduced in [LR].

For an orientable surface M in H? x R oriented with a vector field (1, v) normal
to M, the twisted normal map of M is defined by (see [LR]):

N: M — d$®CL®xR
(p,t) = (J(n(p), v),

where J is the operator acting on tangent planes of H? as the clockwise 7 /2 rotation.
Next proposition shows that if p € H2, then r,=J.

(3.4)
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Proposition 3.7. Let p € H? and let v € T,H? C 3. Let {vs, v3} be an orthogo-

nal basis of T, H2. If u = avs + bvs, then I',(u) = —bvs + avs, via the identification
0 —r s
—r 0 —t | €o(l,2) & (¢ s, r) e L3
s t 0

Remark. As in H? x R we have T, ) (u, v) = (I'p(u), v), Proposition 3.7 shows
that the Gauss map given by the expression (2.5) coincides with the twisted normal

map defined by (3.4).

Proof. Let p = (x1, 2, x3) € H? and u = (uq, us, uz) € T,H?. Then, by equation
(2.15), it follows that

0 U1 — U1T2 UZT] — U1T3
Tp(u) = | uszi —uie 0 U3Toy — UT3
U3xr1 — U3 UT3 — U3T2 0
Writing v; = (v1, v25, v3;) and making the substitution u; = av;s + bu;z on the
previous equality it becomes

0 Ug2T1 — V12T  U32T1 — V123
FP(U) =a V22x1 — V122 0 V322 — V2273
U32T1 — V1273 U22T3 — VU322 0
0 V23T — V13T2  U33T1 — V13T3
+b| vazwi — vi3w2 0 V33T2 — V2373
U33T1 — V13T3 V233 — U332 0
0 —U33z V23 0 V3g  —Uga
=a| —vs3 0 —wviz | +b V32 0 V19
V23 V13 0 —V22  —Ui2 0

= avg — bus.

We then obtain

Corollary 3.8. If N = H? x R, then the Gauss map defined by (2.5) coincides
with the twisted normal map of [LR] given by (3.4).

This corollary implies (together with Theorems 3.1 and 3.3 of [LR]) the following
result:

Proposition 3.9. Let M be an orientable surface in Ma(x) x R oriented w.r.t.
an unitary vector field (n, v) normal to M. Let A/ be the Gauss map of M and let
Oy be the complex quadratic form given on (3.1). Then

Oy =9,
where Q is the Abresch-Rosenberg quadratic form of M ([AR]).

Now it follows from our construction of the Gauss map and Theorem 1 of [AR]:
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Theorem 3.10. Let M be a surface immersed either in $% x R or in H? x R. If
N is the Gauss map of M, then there is an equivalence between

i.: M has constant mean curvature;
ii.: NV is harmonic.

Moreover, both imply
iii.: Qa is holomorphic on M.

Remark. The converse of this theorem is false. It was shown in [FM2] the exis-
tence of certain rotational surfaces in 2 x R with holomorphic Abresch-Rosenberg
differential that fails to be CMC.

4. HOS THEOREM IN SYMMETRIC SPACES OF DIMENSION 3

On [BR], Theorem 4.9 proves HOS theorem for a complete CMC surface M
immersed in a 3-dimensional homogeneous space G/H where G, up to an abelian
factor, is compact. In particular, this result apply for M immersed in $% and in
$2 x R. We now extend HOS theorem for surfaces immersed in a symmetric space
N = G/K as in the preliminaries of Section 2.

Theorem 4.1. Let N = G/K be a 3-dimensional symmelric space as in Sec-
tion 2. Let H > 0 be given and assume that 2H? + Ricy > 0, where Ricy =
miny,— Ricy (v). Let M be a complete orientable surface immersed with CMC H
in N. Assume that N (M) is contained in a hemisphere of the unit sphere in g
determined by a nonzero vector V € g, that is, (N (p),V) <0 for allp € M. We
have:

a): If M has the conformal type of the disk, then M is invariant under the
1-parameter subgroup of isometries of N determined by V;

b): If M has the conformal type of the plane and ((V') is a bounded Killing field
on M then M is invariant under the 1-parameter subgroup of isometries of
N determined by V' or M is umbilical and Ric(n) = Ricy.

Proof. Suppose that N (M) is contained in a hemisphere of g determined by V.
Let m : M — M be the universal covering of M and consider M as an immersed
surface in N. Write f as f o 7. Set f(p) = (C(V)(p), n(p)), p € M, where ¢(V) is
the Killing field on N defined on (2.2). Since (¢(V)(p), n(p)) = (N(p), V) <0, we
have f < 0. Assume first that M is conformal to the disk. We will then show that
f vanishes identically and thus Proposition 2.2 implies that M is invariant under
the group of isometries generated by V.

Using that (I'(grad(H)), V) = 0, we can compute the Laplacian of f as on the
proof of Theorem 2.3 and obtain that

(4.1) Af =~ (B + Ric(n) f = — (2H? + Ric(n)) f > 0,

Therefore, f is a subharmonic function on M. If f vanishes at some point p € M
then, by the maximum principle, f = 0 and the theorem is proved on this case. So,
let us suppose f < 0 and get a contradiction. From the Gauss equation we have
|B||2 = 4H? — 2(K — K) where K is the sectional curvature of M and K is the
sectional curvature of N on tangent planes of M. Using this equation on (4.1), we
obtain
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(4.2) Af —2Kf + (4H2 2K + Ric(n)) F=0.

Considering an orthonormal basis Eq, F5 of TM we obtain
Ric(n) + 2K = (R(n, Ex)n, Ex) + (R(n, Ea)n, Ba) + 2 (R(Ey, B2) By, Es)
= (R(E1,n)Ey,n) + (R(Ey, E2)Ey, Es)
+ (R(E2,n)E2,m) + (R(E2, E1)Es, E1)
= Ric(E1) + Ric(E»).
Then, from the hypothesis
P := Ric(n) + 2K +4H? > 2Ricy +4H? > 0.

Thus f is a negative solution to the equation Af — 2K f + Pf = 0, with P > 0,
which contradicts Corollary 3 of [FS], as M has the conformal type of the disk.
Thus f = 0 and the first part of the theorem is proved.

Assume now that M is conformal to the plane and that ¢ (V) is bounded in M.
This implies f is a bounded function on M. Since by (4.1) f is subharmonic it
follows that f is constant and then Af = 0. This implies

(I1B]I* + Ric(n)) f = 0.
It follows that either f =0 (and then M is invariant under the 1-parameter family
of isometries given by V) or (||B||* 4+ Ric()) = 0. On this case the inequality on
(4.1) would be a equality, thus we would have

| B||* = 2H? and Ric(n) = Ricy,
and from ||B||? = 2H? it follows M is umbilical as it is easy to see. O

Remark. Since an equidistant surface of H? (—1) (that is, a surface which is at
a constant distance to a totally geodesic surface of H?) has the conformal type of
the disc (since it is isometric to H? (c) for some ¢ € [—1,0)) and is orthogonal to
a hyperbolic Killing field (that is, the Killing field which orbits are hypercycles
equidistant to a fixed geodesic) we see that the hypothesis 2H? + Ricy > 0 which,
in the hyperbolic space, is equivalent to H > 1, can not be improved. Also, in
the case that M has the conformal type of the plane, if ¢ (V') is not bounded then
conclusion may not be true: any horosphere S in H? is conformal to the complex
plane (S is isometric to the Euclidean plane) and is everywhere transversal to a
hyperbolic Killing field which is not bounded on S.
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